

Microsoft Dynamics® GP 2013

eConnect Programmer’s Guide

Copyright Copyright © 2012 Microsoft Corporation. All rights reserved.

Limitation of liability This document is provided “as-is”. Information and views expressed in this document, including
URL and other Internet Web site references, may change without notice. You bear the risk of
using it.

Some examples depicted herein are provided for illustration only and are fictitious. No real
association or connection is intended or should be inferred.

Intellectual property This document does not provide you with any legal rights to any intellectual property in any
Microsoft product.

You may copy and use this document for your internal, reference purposes.

Trademarks Microsoft, Microsoft Dynamics, Visual Basic, Visual Studio, BizTalk Server, SQL Server, Windows,
and Windows Server are trademarks of the Microsoft group of companies.

All other trademarks are property of their respective owners.

Warranty disclaimer Microsoft Corporation disclaims any warranty regarding the sample code contained in this
documentation, including the warranties of merchantability and fitness for a particular purpose.

License agreement Use of this product is covered by a license agreement provided with the software product. If you
have any questions, please call the Microsoft Dynamics GP Customer Assistance Department at
800-456-0025 (in the U.S. or Canada) or +1-701-281-6500.

Publication date November 2012 -- Last updated November 26, 2012

E C O N N E C T P R O G R A M M E R ’ S G U I D E i

Contents

Introduction ...2
What’s in this manual...2

Symbols and conventions ..3

Product support ..3

Part 1: eConnect Overview ...6

Chapter 1: Overview .. 7
What is eConnect?...7

What eConnect can do ...7

eConnect Example ...8

Getting started...10

Chapter 2: Architecture ... 13
Architecture diagram ...13

Business objects ...14

eConnect APIs ...16

BizTalk ..18

Transaction Requester ..18

Part 2: eConnect Schema and XML Documents22

Chapter 3: eConnect Schema ... 23
eConnect schema overview...23

Installing eConnect schema...23

Using eConnect schema ...23

eConnect schema reference ...24

Chapter 4: eConnect XML Documents .. 25
eConnect XML document structure ...25

Creating an eConnect XML document ..27

Using the eConnect XML document sample files ..28

Using eConnect to update existing data..28

Automating document number assignment...29

Special characters in eConnect XML documents ...31

Chapter 5: XML Document Examples... 33
Create a customer..33

Delete a customer address ...34

Retrieve a customer ...34

Assign a document number to a sales order...35

Part 3: .NET Development ..40

Chapter 6: .NET Development Overview ... 41
eConnect and .NET...41

ii E C O N N E C T P R O G R A M M E R ’ S G U I D E

C O N T E N T S

Adding a reference..41

Including the namespace ...42

Specifying configuration settings ...43

Tracing an eConnect .NET application ...45

Chapter 7: eConnect and .NET .. 49
Microsoft.Dynamics.GP.eConnect ..49

Using CreateEntity for new records...50

Retrieving XML documents with GetEntity ...51

Retrieving a document number ..54

Returning a document number...54

Retrieving a sales document number...57

Returning a sales document number ...57

eConnect exception handling..58

Chapter 8: Serialization ... 61
Microsoft.Dynamics.GP.eConnect.Serialization ...61

Creating an eConnect document for a .NET project ..61

Using serialization flags...63

Serializing an eConnect document object ...65

Deserializing a Transaction Requester document ..70

Chapter 9: eConnect Integration Service.. 73
eConnect for Microsoft Dynamics GP 2013 Integration Service ..73

Adding a service reference ..74

Client constructors..74

Using the CreateEntity method to add a record...76

eConnect Integration Service exception handling ...78

Part 4: MSMQ Development ..82

Chapter 10: MSMQ ... 83
Microsoft Message Queue overview..83

Windows Services used with MSMQ...83

eConnect MSMQ Control ..84

Chapter 11: Incoming Service .. 85
Creating an eConnect XML document ..85

Creating an MSMQ message ...85

Incoming Service example...86

Chapter 12: Outgoing Service ... 89
Publishing the eConnect XML documents..89

Retrieving the MSMQ message...89

Outgoing Service Example ..90

Part 5: Business Logic ...94

Chapter 13: Business Logic Overview .. 95

E C O N N E C T P R O G R A M M E R ’ S G U I D E iii

C O N T E N T S

Business logic...95

Extending business logic..95

Calling the business objects...95

Chapter 14: Custom XML Nodes ... 97
Adding an XML node...97

Creating a SQL stored procedure ...99

Chapter 15: Business Logic Extensions ... 101
Modifying business logic ...101

Using pre and post stored procedures...102

Part 6: Transaction Requester... 106

Chapter 16: Using the Transaction Requester ... 107
Transaction Requester Overview..107

Requester document types ..107

Requester document tables..108

Using the RequesterTrx element... 110

Using the <taRequesterTrxDisabler> XML node ... 111

Chapter 17: Customizing the Transaction Requester.....................................115
Creating a Transaction Requester document type ... 115

Implementing the RequesterTrx element ..121

Part 7: eConnect Samples .. 126

Chapter 18: Create a Customer ... 127
Overview..127

Running the sample application...127

How the sample application works ...128

How eConnect was used ...128

Chapter 19: Create a Sales Order .. 131
Overview..131

Running the sample application...131

How the sample application works ...132

How eConnect was used ...132

Chapter 20: XML Document Manager... 135
Overview..135

Running the sample application...136

How the sample application works ...136

How eConnect was used ...137

Chapter 21: Get a Document Number... 139
Overview..139

Running the sample applications ...140

How the sample applications work ...140

How eConnect was used ...141

iv E C O N N E C T P R O G R A M M E R ’ S G U I D E

C O N T E N T S

Chapter 22: Retrieve Data .. 143
Overview..143

Running the sample application...143

How the sample application works ...144

How eConnect was used ...144

Chapter 23: MSMQ Document Sender.. 145
Overview..145

Running the sample application...145

How the sample application works ...146

How eConnect was used ...147

Glossary ... 149

Index ... 151

IN
T

R
O

D
U

C
T

IO
N

2 E C O N N E C T P R O G R A M M E R ’ S G U I D E

Introduction
Welcome to eConnect for Microsoft Dynamics™ GP. eConnect provides files, tools,
and services that allow applications to integrate with Microsoft Dynamics GP. This
documentation explains how to use eConnect to develop application integration
solutions. Before you begin installing and using eConnect, take a few moments to
review the information presented here.

What’s in this manual

The Microsoft Dynamics GP eConnect Programmer’s Guide is designed to give you
an in-depth understanding of how to work with eConnect. Information is divided
into the following parts:

• Part 1, eConnect Overview, provides an introduction to eConnect, its compo-
nents, and the application programming interfaces (APIs) it provides.

• Part 2, eConnect Schema and XML Documents, discusses how eConnect uses
XML documents to describe Microsoft Dynamics GP documents and opera-
tions. Review this portion of the documentation to learn how to construct an
eConnect XML document.

• Part 3, .NET Development, discusses how you can use eConnect’s .NET assem-
blies to submit or request XML documents.

• Part 4, MSMQ Development, describes how eConnect uses MSMQ to transport
XML documents to and from integrating applications.

• Part 5, Business Logic, explains how you can supplement or modify the busi-
ness rules eConnect uses to process documents.

• Part 6, Transaction Requester, describes the available options for retrieving
XML documents that represent documents or transactions in Microsoft Dynam-
ics GP.

• Part 7, eConnect Samples, describes the sample applications that are included
with an eConnect SDK installation.

To learn about installing or maintaining eConnect for Microsoft Dynamics GP, refer
to the eConnect Installation and Administration Guide.

For additional information about eConnect XML documents, use the reference
sections in the eConnect help documentation. The eConnect install places the help
document in the directory:
c:\Program Files\Microsoft Dynamics\eConnect 12\help.

E C O N N E C T P R O G R A M M E R ’ S G U I D E 3

I N T R O D U C T I O N

Symbols and conventions

To help you use this documentation more effectively, we’ve included the following
symbols and conventions within the text to make specific types of information
stand out.

Product support
Microsoft Dynamics GP technical support can be accessed online or by telephone.
Go to www.microsoft.com/Dynamics and click the CustomerSource or
PartnerSource link, or call 888-477-7877 (in the US and Canada) or 701-281-0555.

Symbol Description

The light bulb symbol indicates helpful tips, shortcuts,
and suggestions.

Warnings indicate situations you should be aware of
when completing tasks.

Margin notes summarize
important information.

Margin notes call attention to critical information and
direct you to other areas of the documentation where
a topic is explained.

Convention Description

Part 2, XML Documents Bold type indicates a part name.

Chapter 1, “Overview” Quotation marks indicate a chapter name.

Getting started Italicized type indicates a section name.
using System.IO; This font is used to indicate script examples.

Microsoft Message
Queuing (MSMQ)

Acronyms are spelled out the first time they’re used.

TAB or ALT+M Small capital letters indicate a key or a key sequence.

http://www.microsoft.com/Dynamics

4 E C O N N E C T P R O G R A M M E R ’ S G U I D E

P
A

R
T

 1
: E

C
O

N
N

E
C

T
 O

V
E

R
V

IE
W

6 E C O N N E C T P R O G R A M M E R ’ S G U I D E

Part 1: eConnect Overview
This portion of the documentation provides an introduction to eConnect. Review
the following to learn what eConnect can do and understand the components it
uses to support your application development efforts. The list that follows contains
the topics that are discussed:

• Chapter 1, “Overview,” introduces eConnect and how you can use eConnect to
integrate Microsoft Dynamics GP data and functionality into your applications.

• Chapter 2, “Architecture,” describes the components and application
programming interfaces (APIs) that eConnect provides. Use this information to
understand how eConnect works and to determine which API best supports
your development environment and tools.

E C O N N E C T P R O G R A M M E R ’ S G U I D E 7

Chapter 1: Overview
Microsoft Dynamics GP eConnect allows you to integrate your business
applications with Microsoft Dynamics GP. The following topics introduce Microsoft
Dynamics GP eConnect:

• What is eConnect?
• What eConnect can do
• eConnect Example
• Getting started

What is eConnect?

eConnect is a collection of tools, components, and interfaces that allow applications
to programmatically interact with Microsoft Dynamics GP. The key eConnect
components and interfaces include:

• A .NET managed code assembly
• A Microsoft BizTalk® Application Integration Component (AIC)
• Microsoft Message Queuing (MSMQ) services

These eConnect interfaces allow external applications like web storefronts, web
services, point-of-sale systems, or legacy applications to integrate with Microsoft
Dynamics GP. The external applications can perform actions like creating, updating,
retrieving, and deleting back office documents and transactions. While eConnect
supplies a large number of documents, not every Microsoft Dynamics GP feature is
available through eConnect.

Throughout the documentation, the terms back office and front office are used. The term
back office refers to the financial management system, in this case, Microsoft Dynamics GP.
The term front office refers to customer relationship management systems, data warehouses,
web sites, or other applications that communicate with the back office.

eConnect allows you to leverage the existing transaction-based business logic of
Microsoft Dynamics GP. This allows you to focus your time and energy on creating
or enhancing custom applications for the front office.

What eConnect can do

eConnect allows you to enhance your applications as follows:

1. Add real-time access to Dynamics GP data.
eConnect provides real-time access to back office data. It offers a way to add
up-to-date back office information to existing front office applications like web
storefronts or service applications.

2. Share financial management data across applications.
eConnect allows multiple applications to share financial management data. The
eConnect interfaces can support a number of independent applications.
Changes to financial data in Dynamics GP are simultaneously available to all
applications with an eConnect connection to that company in Dynamics GP.

P A R T 1 E C O N N E C T O V E R V I E W

8 E C O N N E C T P R O G R A M M E R ’ S G U I D E

Application integrations using eConnect include the following benefits:

1. Reduce development time.
eConnect has a large number of integration points for Microsoft Dynamics GP.
Software developers can quickly add back office integration to an application.
This reduces cost by simplifying the development effort while providing fast
access to Microsoft Dynamics GP data. eConnect also reduces development
time when the business logic contained in the back office is reused by new
custom applications.

An eConnect integration also reduces costs by reducing data re-entry. An
automated eConnect integration between Microsoft Dynamics GP and a new or
existing online storefront, web service, or other data source eliminates the time
and cost of manually copying data.

2. Reuse existing development tools.
eConnect allows software developers to select their tool of choice when
working with eConnect. Developers can use Microsoft .NET, Microsoft SQL
Server stored procedures, BizTalk, or MSMQ.

3. Leverage industry-standard technologies.
eConnect includes components for MSMQ and BizTalk Server, which are
industry standard tools that support integration between applications.

eConnect also uses XML documents to move data into and out of Microsoft
Dynamics GP. The XML documents are a text-based representation of back
office data. An XML schema specifies the data that is included in each type of
XML document. This allows eConnect to provide back office integration to any
application capable of creating or consuming these XML documents.

eConnect Example

To help you understand how eConnect benefits your development effort, the
following example presents a business problem and its solution using eConnect and
Microsoft Dynamics GP.

Introduction
A theater business owns dozens of dinner theaters scattered throughout the United
States. The company differentiates itself from its competitors by delivering high-
quality service to its customers. To build upon this advantage, the company wants
to allow customers to reserve specific theater seating while online.

The company wants a web-based system that customers use to reserve seats. In
addition, the company wants to provide customers the ability to view the previous
functions they attended. The web portal should also provide customers access to
other valuable information and services.

Requirements
To provide the expected services, the solution must address the following
requirements:

• Use Windows Live ID for security for the online reservation system.

• Allow customers to reserve one or more specific seats at a theater (for example,
a single customer reserves 10 seats in a row for his or her family members).

E C O N N E C T P R O G R A M M E R ’ S G U I D E 9

C H A P T E R 1 O V E R V I E W

• Create a sales invoice in the back office when the reservation is submitted.

• Allow a sales invoice to be cancelled.

• Record a Microsoft Dynamics GP deposit for the reservation fee when the
reservation is submitted.

• Give customers the ability to request their dinner of choice from a specified
group of vendors.

• Allow customers to request specific items in the theater by using a handheld
device that is situated at each table.

• For non-reservation customers, allow a theater card to be swiped at arrival. The
card automatically creates a sales invoice in the back office.

• Create a payables transaction in the back office when food and beverage items
are ordered. Submit a sales order to the vendor.

• At the end of the theater presentation, generate a receipt for each customer.

• Create payroll transactions for employee tips.

• At the end of the theater presentation, a submit a check to each vendor. Each
check includes all customer transactions for that vendor.

Solution
To meet these requirements, a web-based solution is proposed. The web application
uses BizTalk and eConnect to integrate with Microsoft Dynamics GP. The
combination of eConnect and BizTalk allow the web application to perform the
following tasks:

• Use eConnect to create the sales invoices in Microsoft Dynamics GP. The web
application creates an eConnect XML document and sends it to a BizTalk
queue. eConnect receives the XML document from BizTalk and uses the XML
document to create the sales invoice.

• Use eConnect to cancel an existing sales invoice. The web application creates an
XML document and sends it to a BizTalk queue. eConnect receives the XML
document from BizTalk and uses the XML document to void the specified sales
invoice.

• Use eConnect to create payables transactions representing the customer’s food
and beverage orders. The web application creates an XML document and sends
it to a BizTalk queue. eConnect receives the XML document from BizTalk and
uses the XML document to create the payables transactions. The web
application could also submit a receivables transaction to the vendor through
the BizTalk server if the vendor is also using eConnect or an accounting system
that supports a similar type of document exchange.

• Use eConnect to process check submissions. The web application creates an
XML document and sends it to a BizTalk queue. eConnect receives the XML
document from BizTalk and completes the custom check submission. This step
includes the following customizations:

P A R T 1 E C O N N E C T O V E R V I E W

10 E C O N N E C T P R O G R A M M E R ’ S G U I D E

• Create a new stored procedure to handle the creation of checks for all ven-
dor transactions.

• Create a cash receipt. After creating the vendor check, create an XML docu-
ment using Microsoft Dynamics GP data that details the check’s contents.
Perform a transform of the XML document to create a cash receipt for the
vendor. This transaction occurs after making a payment through an online
credit card processing system.

• Submit the cash receipts to the vendors. If the vendors also use BizTalk
server, eConnect, and Microsoft Dynamics GP, develop a process to elec-
tronically submit the cash receipts.

• Use eConnect to retrieve a specified invoice. The web application uses the XML
document that is returned by eConnect to generate a printout for the customer.

• Use eConnect to update payroll to reflect employee tips. The web application
creates a XML document and sends it to a BizTalk queue. eConnect receives the
XML document from the BizTalk queue and updates Microsoft Dynamics GP to
reflect tip amounts for each employee.

Summary
The example shows how eConnect simplifies the development of the web solution.
eConnect’s schema-based XML documents allows the application to easily
incorporate back office functionality using existing development tools.

The example also shows how reusing the business logic and the transaction
processing abilities of Microsoft Dynamics GP simplify development. The web
application can submit the document and rely upon Microsoft Dynamics GP to
successfully complete the transaction.

The example uses eConnect as part of a web-based solution. A web-based solution
simplifies the deployment of features that use eConnect integrations. An update of
the web application or web service makes your new or updated features
immediately available to all users.

Getting started

To use eConnect in a development project, complete the following:

1. Review the eConnect architecture.
Review Chapter 2, “Architecture,” to familiarize yourself with eConnect’s
components. eConnect supports several application programming interfaces
(APIs) that you can use to integrate with Microsoft Dynamics GP. If you
understand how eConnect’s underlying components work together, you can
quickly identify the eConnect API that meets the needs of your integration
project.

2. Discuss the installation process.
Before starting a new project, discuss the eConnect installation procedure with
your system administrator. You need to ensure the eConnect business objects
are installed on the Microsoft Dynamics GP server. You also need to identify
any unique configuration settings that occurred during installation. You should
evaluate how configuration settings impact each eConnect API.

E C O N N E C T P R O G R A M M E R ’ S G U I D E 11

C H A P T E R 1 O V E R V I E W

3. Learn about eConnect XML documents.
eConnect uses XML documents to describe Microsoft Dynamics GP documents
and transactions. Refer to Part 2, eConnect Schema and XML Documents, to
learn how eConnect XML documents are structured. Refer to the Schema
Reference and an XML Node Reference of the eConnect help documentation to
learn about specific eConnect schemas, nodes, and elements.

4. Select the API for your project.
Once you select the eConnect API you intend to use, review the portion of the
Programmer’s Guide that discusses that API. For example, if you want to use
eConnect with a .NET development project, review Part 3, .NET Development
to learn how to add and use eConnect in your project.

12 E C O N N E C T P R O G R A M M E R ’ S G U I D E

E C O N N E C T P R O G R A M M E R ’ S G U I D E 13

Chapter 2: Architecture
When using Microsoft Dynamics GP eConnect, it is helpful to understand its
architecture. Architectural information is divided into the following sections:

• Architecture diagram
• Business objects
• eConnect APIs
• BizTalk
• Transaction Requester

Architecture diagram

eConnect installs a collection of components that work together to provide
programmatic access to Microsoft Dynamics GP data. The following diagram
illustrates the basic components:

Microsoft

MSMQ

Incoming Outgoing Transaction
Requester

XML
XML XML

Service Service

BizTalk

BizTalk

Server

Adapter

Dynamics GP

XML

Integrating
Applications

Runtime
Layer

Data Access
Layer

Business Objects

Pre PostSQL stored procedures

.NET Assemblies

eConnect Integration Service

XML

P A R T 1 E C O N N E C T O V E R V I E W

14 E C O N N E C T P R O G R A M M E R ’ S G U I D E

Refer to the eConnect
Installation and
Administration Guide
for additional
information about
installing and
configuring eConnect.

The diagram illustrates eConnect’s two key layers and the components that make
up those layers. The two layers are as follows:

• The data access layer contains the eConnect business objects. The business
objects are a collection of SQL stored procedures installed on the Microsoft
Dynamics GP server. eConnect uses the business objects to perform all retrieve,
create, update, and delete operations.

• The runtime layer contains a collection of files, Windows services, and
components that provide the application programming interfaces (API) you use
to send or retrieve XML documents. The API enable your application to use the
business objects. You must install the components of the runtime layer on the
same computer as your integrating application. When you develop a new
application, install and use the API that best meets your integration needs.

The diagram shows that an integrating application can bypass the API layer and
use the eConnect business objects directly.

The Transaction Requester is an interface you use to retrieve specified types of
eConnect XML documents. Typically, the Transaction Requester uses the Outgoing
Service to publish document to an MSMQ queue. The Transaction Requester
includes the eConnect Requester Setup tool that you use to specify the types of
transactions the Outgoing Service publishes as an XML document.

Business objects

The stored procedures contain the business logic used by eConnect. Any integration
that uses eConnect to query, create, update, or delete data from Microsoft Dynamics
GP uses one or more of these stored procedures.

The eConnect business objects include the Microsoft Dynamics GP documents and
transactions that are commonly used in application integration. While eConnect
supplies a large number of documents, not every Microsoft Dynamics GP feature is
available through eConnect.

You cannot edit or modify the business logic in an eConnect stored procedure. To
enable the customization of business logic, eConnect includes a pre and post stored
procedures for each eConnect stored procedure. The pre stored procedure runs
immediately before the eConnect stored procedure, while the post stored procedure
runs immediately after the eConnect stored procedure. To customize the business
logic, add SQL queries and commands to one or both of these stored procedures.

For example, assume you want the eConnect stored procedure named
taCreateTerritory to always populate a field with a specified value. To implement
your customization, add custom SQL code to the stored procedure named
taCreateTerritoryPre that populates the field with the specified value. Your custom
code runs immediately before every execution of the taCreateTerritory stored
procedure.

E C O N N E C T P R O G R A M M E R ’ S G U I D E 15

C H A P T E R 2 A R C H I T E C T U R E

The following diagram shows the typical sequence of events that occur within a
business object:

Notice how the business object validates data parameters, adds default values, and
performs a status check after each event. The business object uses status checks to
handle errors. When a status check detects an error, it immediately stops the stored
procedure, initiates a rollback of the transaction, and returns an error message to
the caller.

For example, a status check detects that an error occurred during the update
operation of the business object. The status check immediately stops the stored
procedure, rolls back the transaction, and then returns an error message. In this
scenario, the business object never runs the post stored procedure.

Start

Creates and initializes
local variables

Validates the input
parameters

Sets data values,
performs operation

End

Call the “Pre” stored
procedure Customized

stored
procedure
executesCheck status from

stored procedure

Checks status after
validating parameters

Microsoft
Dynamics GP

Call the “Post” stored
procedure Customized

stored
procedure
executesCheck status from

stored procedure

Check status from the
operation

P A R T 1 E C O N N E C T O V E R V I E W

16 E C O N N E C T P R O G R A M M E R ’ S G U I D E

The eConnect business objects are placed on your database server during the install
of Microsoft Dynamics GP, and the creation of a new company database. There are
two ways to access the business objects.

• Call individual business objects from the integrating application. However,
direct calls require you to implement a connection to the database server, add
security restrictions that prevent unauthorized access to data, and include
proper error handling. For more information about direct calls, see Calling the
business objects.

• Use one of the APIs that eConnect provides. The APIs offer a simpler approach
to using the eConnect business objects from an integrating application. The
types of eConnect APIs that are available are discussed in the sections that
follow.

Refer to Chapter 13, “Business Logic Overview,” for additional information about
extending the business objects and calling the eConnect stored procedures.

eConnect APIs

eConnect provides a collection of APIs that allow you to use the business objects.
There are APIs for Microsoft .NET, and Microsoft Message Queuing (MSMQ). The
variety of eConnect APIs allows you to use the interface that best fits your
integration project and the available development tools.

To support its API, eConnect supplies a Windows service named eConnect for
Microsoft Dynamics GP 2013 Integration Service. The eConnect Integration Service
manages interaction between your application and the eConnect business objects.
You must install the eConnect Integration Service in the Services on the computer
you use to run your applicaiton. Refer to the eConnect Installation and
Administration Guide for information about installing and configuring the
eConnect Integration Service.

To use the eConnect API, your application must create or read eConnect XML
documents. Refer to Chapter 4, “eConnect XML Documents,” for additional
information about creating eConnect XML documents.

The eConnect install includes files containing the XML schema for all its
documents. A schema is an XML file (with typical extension .xsd) that describes the
syntax and semantics of XML documents using a standard XML syntax. An XML
schema specifies the content constraints and the vocabulary that compliant
documents must accommodate.

You can use these files to perform validation. When eConnect validates a document,
it uses the schema to ensure the document contains the expected information. It
rejects documents that do not comply with the schema specifications. The schema
files can also serve as a reference. Since the files describe each type of eConnect
document, you can use them to research questions about the schemas, nodes, and
elements a document may contain.

The following APIs use XML documents and the eConnect Integration Service:

E C O N N E C T P R O G R A M M E R ’ S G U I D E 17

C H A P T E R 2 A R C H I T E C T U R E

Microsoft .NET
When you install the eConnect integration Service, the installer places two .NET
assemblies on your computer. The installer also registers these assemblies in the
global assembly cache.

You can add these assemblies to a Visual Studio project by adding a reference to
each assembly file. Once you include the .NET assemblies in your project, you gain
access to the eConnect Integration Service. The .NET assemblies enable your
application to parse eConnect XML documents, create a connection to the Microsoft
Dynamics GP server and call the eConnect business objects. Your eConnect enabled
solution can then use XML documents to create, delete, update, or retrieve
Microsoft Dynamics GP data.

Refer to Chapter 7, “eConnect and .NET,” for information about creating solutions
using the eConnect .NET assemblies.

MSMQ
The MSMQ API includes two Windows services. The services are as follows:

• The Incoming Service monitors a specified queue and retrieves XML
documents placed in that queue. The Incoming Service then uses the eConnect
Integration Service to parse the XML documents, create a connection to the
Microsoft Dynamics GP server, and call the eConnect business objects. To use
this API, you create an application that submits XML documents to the
specified queue.

• The Outgoing Service publishes XML documents to a queue in response to
specified events in Microsoft Dynamics GP. To use this API, you create
applications that retrieve the XML documents from the queue and perform
actions based on the XML data.

To develop solutions that use the MSMQ API, you should carefully consider the
following:

• The MSMQ API is asynchronous. Due to the disconnected nature of the API,
changes are not immediately reflected in Microsoft Dynamics GP or in the
integrating application. In addition, your application cannot immediately
determine whether a document submitted using the Incoming Service was
successfully processed.

• All applications that use the MSMQ API must be able to access the specified
MSMQ queues.

• The eConnect Outgoing Service relies on the eConnect Transaction Requester to
create SQL triggers in the Microsoft Dynamics GP database. If you plan to use
the Outgoing Service, you must use the Transaction Requester to identify the
Microsoft Dynamics GP documents and events that you want the Outgoing
Service to publish to a specified queue.

Refer to Chapter 10, “MSMQ,” for additional information about creating solutions
using MSMQ and the Incoming and Outgoing Services.

P A R T 1 E C O N N E C T O V E R V I E W

18 E C O N N E C T P R O G R A M M E R ’ S G U I D E

BizTalk

See the eConnect
Installation and
Administration Guide
for information about
installing and
configuring eConnect’s
BizTalk adapter.

eConnect provides a BizTalk application integration component (AIC) that you can
install on your BizTalk server. The BizTalk adapter allows you to use BizTalk to
manage interaction with eConnect business objects.

The adapter supports the use of eConnect as a part of a BizTalk orchestration or in a
simple pass-through situation. A BizTalk orchestration allows applications with
differing message formats to integrate, while a BizTalk pass-through simply routes
messages between applications.

The choice between using a BizTalk Orchestration or a pass-through depends on the
level of flexibility your solution requires. An orchestration provides the greatest
flexibility. For example, you can customize the adapter by adding bindings to other
applications.

Refer the BizTalk documentation for information about developing a BizTalk-based
integration.

Transaction Requester

The Transaction Requester is a collection of SQL database tables and database
triggers that eConnect uses to make Dynamics GP data changes available to the
Outgoing Service. The following diagram illustrates the Transaction Requester:

When you install the Transaction Requester, the installer creates three tables in each
specified Microsoft Dynamics GP database:

• eConnect_Out This table stores data from selected create, update, or delete
operations that occur within Microsoft Dynamics GP. The data identifies the
individual transactions that occurred. The Outgoing Service uses the data in
this table to create an XML document that is placed in a queue.

Microsoft Dynamics GP
database

MSMQ

Outgoing
Service

An application creates
a new record.

The Outgoing Service
queries the eConnect_Out
table. XML representing
the new record is sent to
the eConnect outgoing
queue in MSMQ.

eConnect_Out
table

The Transaction
Requester’s SQL trigger
reacts to the record’s
creation, and inserts an
entry to the eConnect_Out
table.

E C O N N E C T P R O G R A M M E R ’ S G U I D E 19

C H A P T E R 2 A R C H I T E C T U R E

• eConnect_Out_Setup This table contains configuration information for
the Transaction Requester. To keep the Transaction Requester working, do not
make changes to this table.

• eConnectOutTemp This table is a temporary data store.

For example, assume you want your application to be updated when a new
customer is added to Microsoft Dynamics GP. To begin, you use the eConnect
Requester Setup utility to specify the customer object and the SQL insert operation.
The eConnect Requester Setup adds a SQL trigger to the database. When a new
customer record is inserted, the SQL trigger creates a record of the event in the
eConnect_Out table.

The eConnect Outgoing Service periodically queries the eConnect_Out table. The
service uses the record in the table to create an XML document that describes the
new customer document.

The Outgoing Service then places the XML document in a message queue where it
can be retrieved and used by your application.

To configure the eConnect Transaction Requester, use the eConnect Requester
Setup utility. The eConnect Requester Setup utility allows you to specify Dynamics
GP objects and operations you want to export to another application. The utility
then adds SQL triggers to Dynamics GP that populate the eConnect_Out table for
the specified objects and operations. For a detailed explanation of how to use the
eConnect Requester Setup utility, see the eConnect Installation and Administration
Guide.

Refer to Chapter 17, “Customizing the Transaction Requester,” for information
about using and customizing the Transaction Requester Service.

20 E C O N N E C T P R O G R A M M E R ’ S G U I D E

P
A

R
T

 2
: E

C
O

N
N

E
C

T
 S

C
H

E
M

A
 A

N
D

 X
M

L D
O

C
U

M
E

N
T

S

22 E C O N N E C T P R O G R A M M E R ’ S G U I D E

Part 2: eConnect Schema and XML
Documents
To use eConnect, you must be able to create or consume eConnect XML documents.
This portion of the documentation explains the XML schemas that govern how
eConnect XML documents are assembled. The list that follows contains the
information you need to understand eConnect’s XML schema and documents:

• Chapter 3, “eConnect Schema,” introduces eConnect XML schema. The schema
define how to supply data using eConnect XML documents. The schema also
allow you to validate the documents you submit to ensure they can be
processed by eConnect.

• Chapter 4, “eConnect XML Documents,” introduces eConnect XML documents.
Review this information to understand how you use these XML documents to
describe Microsoft Dynamics GP documents and operations.

• Chapter 5, “XML Document Examples,” provides examples of eConnect XML
document. The examples demonstrates how XML components fit together to
create an actual eConnect XML document.

E C O N N E C T P R O G R A M M E R ’ S G U I D E 23

Chapter 3: eConnect Schema
To integrate your application with Microsoft Dynamics GP, eConnect requires you
to submit XML documents that describe Microsoft Dynamics GP documents and
transactions. To ensure the documents can be consistently processed, eConnect
supplies a collection of XML schema that define the XML documents eConnect
accepts. Information about the schemas include the following:

• eConnect schema overview
• Installing eConnect schema
• Using eConnect schema
• eConnect schema reference

eConnect schema overview

eConnect uses XML schema to define what an eConnect XML document contains. A
schema is an XML file (with typical extension .xsd) that describes the syntax and
semantics of XML documents using a standard XML syntax. An XML schema
specifies the content constraints and the vocabulary that compliant documents must
accommodate.

eConnect transports the XML documents as messages between your application
and eConnect.

Installing eConnect schema

When you include the schemas component of the eConnect install, the installer
places schema files in a schemas folder on your computer. The following schema
resources are available:

• The install places the .xsd schema files in the directory c:\Program
Files\Microsoft Dynamics\eConnect 12.0\XML Sample Documents\Incoming
XSD Individual Schemas. The files in the directory contain the schema for each
eConnect XML document.

• The install places a file named eConnect.xsd that contains the schema definition
for all eConnect XML documents. The install typically places this file in the
directory c:\Program Files\Microsoft Dynamics\eConnect 12.0\XML Sample
Documents\Incoming XSD Schemas.

Using eConnect schema

To use the eConnect application programming interfaces (APIs), your application
must be able to create XML documents or read XML documents based on these
schema. If you submit a document that does not comply with its schema definition,
it will be rejected and an error will be logged in the eConnect event log.

The schema files also allow you to perform validation of the documents you create.
The eConnect API allow you to specify the schema file for the document.

• Use the eConnect.xsd file when your application needs to validate all types of
XML documents.

• Use the individual document XSD files to perform validation for a specific
eConnect XML document.

P A R T 2 E C O N N E C T S C H E M A A N D X M L D O C U M E N T S

24 E C O N N E C T P R O G R A M M E R ’ S G U I D E

The schema files contain the definition of each eConnect XML document,
transaction type schema, and XML node. If you have questions about the schema
XML nodes, and elements for a specified eConnect document, the schema files are
the definitive source of the information you need.

eConnect schema reference

The eConnect online help documentation contains two reference sections that
describes the eConnect transaction type schemas and the XML nodes. These
references help you identify the nodes, elements, and values you can use in an
eConnect XML document.

E C O N N E C T P R O G R A M M E R ’ S G U I D E 25

Chapter 4: eConnect XML Documents
An eConnect XML document is a text based data structure that represents a
Microsoft Dynamics GP transaction or document. To submit or retrieve Microsoft
Dynamics GP data, you send or receive data as an eConnect XML document.

You use an eConnect XML document to represent the data for a Microsoft
Dynamics GP operation. For example, you have to create an XML document when
you want to add or update a record in Microsoft Dynamics GP.

To help you create an eConnect XML document, you can use the classes in the
Microsoft.Dynamics.GP.eConnect.Serialization .NET assembly. You can use the classes to
create a document and then convert that document to XML. For information about the
serialization classes, see Creating an eConnect document for a .NET project and Serializing
an eConnect document object.

When you use eConnect to retrieve a Microsoft Dynamics GP document, the data
appears as an eConnect XML document. To use the data, you get values from the
XML document.

The following sections provide more detailed information about eConnect XML
documents:

• eConnect XML document structure
• Creating an eConnect XML document
• Using the eConnect XML document sample files
• Using eConnect to update existing data
• Automating document number assignment
• Special characters in eConnect XML documents

eConnect XML document structure

An eConnect XML document is collection of related XML components that
represent a Microsoft Dynamics GP transaction or document. The XML components
are in a parent/child hierarchy that define the data structure for the document type.
The components and hierarchy for a document type is specified by an XML schema.
For information about the schema, see eConnect schema overview.

The following table lists the basic components of an eConnect XML document:

The following diagram illustrates a simple eConnect XML document. Notice how
the eConnect document implements the parent/child relationships specified by the
eConnect schema. Also notice how the eConnect transaction type is the parent to
the <eConnectProcessInfo> and <taSopHdrIvcInsert> eConnect XML nodes.

Component type Description

eConnect document The root of the document. The eConnect document is the parent to
one or more eConnect transaction type nodes.

eConnect transaction type Specifies the type of the document or transaction. The transaction
type is the parent to one or more eConnect XML nodes.

eConnect XML nodes The parent to one or elements. The elements contain the data
values for the document.

P A R T 1 E C O N N E C T O V E R V I E W

26 E C O N N E C T P R O G R A M M E R ’ S G U I D E

eConnect document
An eConnect XML document always contains a single <eConnect> node. The
<eConnect> node is the root node of the document. The <eConnect> node contains
one or more transaction type nodes.

In addition, the <eConnect> node defines the scope of the SQL transaction for the
specified operation. If any child component of the <eConnect> node fails, a rollback
is performed that removes all the changes and updates specified by the XML
document.

As a result, an eConnect XML document should include information related to a
single Microsoft Dynamics GP operation. This ensures all the component pieces of
the operation are consistently applied or rolled back.

If you encounter a situation that requires using unrelated transaction types within a
document, evaluate whether a SQL rollback will cause problems for your
application or your Microsoft Dynamics GP data.

eConnect Transaction Type
An eConnect transaction type is an XML component that represents a Microsoft
Dynamics GP document or operation. An eConnect XML document always
includes one or more transaction type nodes. If you want your eConnect XML
document to perform more than one operation, you have to add a transaction type
node for each operation.

To create an eConnect XML document, you first add a transaction type node to the
<eConnect> root node. For example, you add a <RMCustomerMasterType>
transaction type node to a document that represents a new customer.

A transaction type node is the parent of one or more eConnect XML nodes. The
eConnect schema files show the XML nodes you use to populate each transaction
type. For information about the schema files, see Using eConnect schema.

<eConnect xmlns:dt=”urn:schemas-mircrosoft-com:datatypes”>

<SOPTransactionType>

<eConnectProcessInfo>

eConnect document

eConnect transaction
type

eConnect process info
node

<taSopHdrIvcInsert>eConnect XML node

E C O N N E C T P R O G R A M M E R ’ S G U I D E 27

C H A P T E R 4 E C O N N E C T X M L D O C U M E N T S

eConnect XML node
An eConnect node is an XML component that contains a collection of elements. An
element has a name and can contain a data value. You use the data values of the
elements when you use eConnect to perform a Microsoft Dynamics GP operation.
The eConnect schema files specify the elements contained in an XML node.

Some eConnect transaction types can include a collection of more than one XML
node of a specified type. The schema identifies these nodes by appending “_Items"
to the node name. For example, the <RMCustomerMasterType> can include more
than one address for a customer. The <taCreateCustomerAddress_Items> node
indicates that you can add more than one <taCreateCustomerAddress> XML node
for a customer.

The following table describes the properties for an eConnect XML element:

The <eConnectProcessInfo> node
The eConnect schema specifies that the first XML node of each eConnect transaction
type schema must be an <eConnectProcessInfo> node. You can use the elements of
the <eConnectProcessInfo> node to change how specific transaction types are
processed. The following example shows how to use the <eConnectProcessInfo>
node to override the default eConnect connection string:

<eConnectProcessInfo>

<ConnectionString>

Integrated Security=SSPI;

Persist Security Info=False;

Initial Catalog=TWO;

Data Source=machinename

</ConnectionString>

</eConnectProcessInfo>

Creating an eConnect XML document

An eConnect XML document is a text-based representation of a Microsoft
Dynamics GP document or transaction. As a result, you can use many XML or text
tools to produce an eConnect XML document.

Property Description

Name Specifies the name that identifies the element. You use the name to
identify a specific element in a document.

Required Specifies whether the element requires a value. If you do specify a value
for the element, the transaction produces an error,
In the schema files, a required element has both the minOccurs and
maxOccurs property set to 1.

Type Specifies the expected data type for the element value. For example, an
element that contains text will have a data type of string.

Default Specifies the default value for an element.

Length Specifies the maximum data length of the value you can use to populate
an element. The length is determined by the business object input
parameter that handles the specified element.

Constraint Specifies the data value or values that the element can accept. To populate
the element, you must specify a value that satisfies the data constraint. If
you specify a value that does not meet the data constraint, an error occurs
and the transaction fails.

P A R T 1 E C O N N E C T O V E R V I E W

28 E C O N N E C T P R O G R A M M E R ’ S G U I D E

However, you must structure the XML in the document to comply with the
hierarchy of nodes specified by the eConnect schema for the specified eConnect
transaction type. If you do not provide the XML nodes and elements in the expected
order, the document will be rejected.

To manually create an XML document, find the eConnect transaction type in the
XML Schema Reference of the eConnect help file and add the XML nodes in the
specified order. Next, find each XML node in the XML Node Reference of the
eConnect Help file and add the XML elements in the specifed order.

You can also use the schema file for the specified transaction type to validate the
structure of your XML document.

After you create the XML document, you can use MSMQ or the .NET assembly
(Microsoft.Dynamics.GP.eConnect.dll) to submit the XML document to eConnect.
Any XML document that you submit keeps the XML nodes and element in the
order that you provided. MSMQ and the classes in the eConnect assembly do not
change the order of the XML nodes and elements.

To create an eConnect document for a .NET project, you can use the eConnect
serialization assembly. The Microsoft.Dynamics.GP.eConnect.Serialization
assembly is a .NET assembly that you can use to programmatically produce
eConnect XML documents. To learn more about how to use the serialization classes,
see Serializing an eConnect document object.

The serialization assembly does automatically order the XML nodes and elements to comply
with the eConnect schema requirements.

Using the eConnect XML document sample files

To assist you with developing and testing eConnect solutions, the eConnect SDK
includes several files that contain sample XML documents. Typically, the eConnect
install places these files in the following folder:

c:\Program Files\Microsoft Dynamics\eConnect 12.0\XML Sample

Documents\Incoming

The XML files represent several types of eConnect documents and include test data.
You can use the sample documents as an example for an XML document you want
to use. You can also use the sample documents to test an eConnect application.

Using eConnect to update existing data

Many eConnect XML documents allow you to update existing Microsoft Dynamics
GP documents. To perform an update, your eConnect XML document must include
XML nodes that provide update functionality.

XML nodes with update functionality represent eConnect business objects that can
determine whether the node identifies an existing Microsoft Dynamics GP data
document. If the document exists, the business object updates that document. If an
existing document is not found, the business object creates a new Microsoft
Dynamics GP data document.

When the eConnect business object updates an existing Microsoft Dynamics GP
document, it uses one of the following techniques:

E C O N N E C T P R O G R A M M E R ’ S G U I D E 29

C H A P T E R 4 E C O N N E C T X M L D O C U M E N T S

• The business object completes a document exchange. A document exchange
replaces all existing data with the values supplied by the XML node elements. If
the XML node leaves an element empty, the business object replaces the
previous value in Microsoft Dynamics GP with the eConnect default value.
Document exchange requires your XML node to include values for all the
elements and not just the elements that are being updated.

• The business object completes field level updates. Field level updates allow
your XML node to include only the elements that have new values. If the XML
node excludes an element, the existing value in Microsoft Dynamics GP
remains unchanged.

Automating document number assignment

Microsoft Dynamics GP uses document numbers to uniquely identify each
document. Many types of documents have document numbers. Each document
type has a specified series of numbers and a new document is given the next
available number from the series. When you use eConnect to create a document,
you have to give that document a unique document number.

To simplify the numbering of new documents, several types of eConnect XML
documents automate the assignment of the document number. The document gets
the next available number at the time that it is created in Microsoft Dynamics GP.

The following table shows the eConnect documents and schemas that support the
automated assignment of a document number:

To have eConnect supply a document number, your XML document must contain a
schema that supports automatic numbering. The XML nodes in the schema must
include the XML element that specifies the document number, but the value of the
element must remain empty.

The following XML example shows how to use automated number assignment for a
new GL transaction document. Notice how the value of the <JRNENTRY> element
is empty. When the business object encounters the empty element, the business
object performs a query that gets the next available GL journal entry number. The
business object uses the query result to populate the <JRNENTRY> element.

<taGLTransactionHeaderInsert>

<BACHNUMB>TEST14</BACHNUMB>

<JRNENTRY></JRNENTRY>

<REFRENCE>General Transaction</REFRENCE>

<TRXDATE>2007-01-21</TRXDATE>

<RVRSNGDT>1900-01-01</RVRSNGDT>

Document Type Schema name XML element

General Ledger GLTransaction <JRNENTRY></JRNENTRY>

Inventory IVInventoryTransaction <IVDOCNBR></IVDOCNBR>

Inventory IVInventoryTransfer <IVDOCNBR></IVDOCNBR>

Purchase Order Processing POPReceivings <POPRCTNM></POPRCTNM>

Purchase Order Processing POPTransaction <PONUMBER></PONUMBER>

Purchasing PMTransaction <VCHNUMWK></VCHNUMWK>

Receivables RMTransaction <DOCNUMBR></DOCNUMBR>

Sales Order Processing SOPTransaction <SOPNUMBE></SOPNUMBE>

P A R T 1 E C O N N E C T O V E R V I E W

30 E C O N N E C T P R O G R A M M E R ’ S G U I D E

<TRXTYPE>0</TRXTYPE>

<SQNCLINE>16384</SQNCLINE>

</taGLTransactionHeaderInsert>

However, SOP documents do not require an empty element. When you create a
SOP document, eConnect assigns a document number even if the <SOPNUMBE>
element is excluded from the XML document.

There are several types of SOP documents and each type uses a separate series of
document numbers. To specify the type of a SOP document, you use the
<SOPTYPE> and <DOCID> elements.

For example, you want to create a new sales order document. You add a
<taSopHdrIvcInsert> XML node to you document. To get the correct type of
document number, you populate the <SOPTYPE> with 2 and the <DOCID> with
STDORD. You do not include the <SOPNUMBE> element. When you submit the
document, it gets the next available document number for a sales order.

You can override the behavior that adds the document number. If you populate the document
number element with a value, eConnect always uses the specified value in the Microsoft
Dynamics GP document.

The following XML example shows an eConnect XML document that uses
automatic document numbering. Notice how the <taGLTransactionLineInsert> and
<taGLTransactionHeaderInsert> XML nodes include an empty <JRNENTRY>
element.

<eConnect xmlns:dt="urn:schemas-microsoft-com:datatypes">

<GLTransactionType>

<taGLTransactionLineInsert_Items>

<taGLTransactionLineInsert>

<BACHNUMB>TEST14</BACHNUMB>

<JRNENTRY></JRNENTRY>

<SQNCLINE>16384</SQNCLINE>

<ACTINDX>0</ACTINDX>

<CRDTAMNT>15.00</CRDTAMNT>

<DEBITAMT>0.00</DEBITAMT>

<ACTNUMST>000-2300-00</ACTNUMST>

</taGLTransactionLineInsert>

<taGLTransactionLineInsert>

<BACHNUMB>TEST14</BACHNUMB>

<JRNENTRY></JRNENTRY>

<SQNCLINE>32768</SQNCLINE>

<ACTINDX>0</ACTINDX>

<CRDTAMNT>0.00</CRDTAMNT>

<DEBITAMT>15.00</DEBITAMT>

<ACTNUMST>000-2310-00</ACTNUMST>

</taGLTransactionLineInsert>

</taGLTransactionLineInsert_Items>

<taGLTransactionHeaderInsert>

<BACHNUMB>TEST14</BACHNUMB>

<JRNENTRY></JRNENTRY>

<REFRENCE>General Transaction</REFRENCE>

<TRXDATE>2007-01-21</TRXDATE>

<RVRSNGDT>1900-01-01</RVRSNGDT>

<TRXTYPE>0</TRXTYPE>

E C O N N E C T P R O G R A M M E R ’ S G U I D E 31

C H A P T E R 4 E C O N N E C T X M L D O C U M E N T S

<SQNCLINE>16384</SQNCLINE>

</taGLTransactionHeaderInsert>

</GLTransactionType>

</eConnect>

Special characters in eConnect XML documents

If your XML data contains one or more special characters, you must add a CDATA
format tag to your data element. The following table lists the special characters that
require the use of a CDATA tag.

The MSXML parser requires a CDATA format tag when you use one of these
characters. The following example demonstrates the use of a CDATA format tag:

<VENDNAME>

<![CDATA[Consolidated Telephone & Telegraph]]>

</VENDNAME>

You can also use a CDATA tag to remove data from a field. To clear data from a
field, create an eConnect XML document that updates the targeted record. Use a
CDATA tag that contains a blank space to populate the eConnect element that
represents the field.

The following example uses a CDATA tag to clear the Short Name field of a
customer. Notice how the CDATA tag contains a single blank space.

<eConnect xmlns:dt="urn:schemas-microsoft-com:datatypes">

<RMCustomerMasterType>

<eConnectProcessInfo>

</eConnectProcessInfo>

<taUpdateCreateCustomerRcd>

<CUSTNMBR>AARONFIT0001</CUSTNMBR>

<SHRTNAME>

<![CDATA[]]>

</SHRTNAME>

<UpdateIfExists>1</UpdateIfExists>

</taUpdateCreateCustomerRcd>

</RMCustomerMasterType>

</eConnect>

Special character Special meaning Entity encoding

< Begins a tag <

> Ends a tag >

“ Quotation mark "

‘ Apostrophe '

& Ampersand &

32 E C O N N E C T P R O G R A M M E R ’ S G U I D E

E C O N N E C T P R O G R A M M E R ’ S G U I D E 33

Chapter 5: XML Document Examples
This portion of the documentation contains XML examples that show how to use an
eConnect document to create, retrieve, update and delete a record. The following
sections include XML examples for each type of operation:

• Create a customer
• Delete a customer address
• Retrieve a customer
• Assign a document number to a sales order

Create a customer

The following XML example uses an eConnect XML document to create a customer.
Note the following characteristics of the document:

• The document contains a single <RMCustomerMasterType> transaction type
schema. The schema specifies the XML nodes you use to create a customer.

• You use the <taUpdateCreateCustomerRcd> node to describe the customer
record.

• Notice how the elements of the <taUpdateCreateCustomerRcd> node are
populated with values that identify the new customer.

<eConnect xmlns:dt="urn:schemas-microsoft-com:datatypes">

<RMCustomerMasterType>

<eConnectProcessInfo>

</eConnectProcessInfo>

<taUpdateCreateCustomerRcd>

<CUSTNMBR>JEFF0002</CUSTNMBR>

<CUSTNAME>JL Lawn Care Service</CUSTNAME>

<STMTNAME>JL Lawn Care Service</STMTNAME>

<SHRTNAME>JL Lawn Care</SHRTNAME>

<ADRSCODE>PRIMARY</ADRSCODE>

<ADDRESS1>123 Main Street</ADDRESS1>

<CITY>Valley City</CITY>

<STATE>ND</STATE>

<ZIPCODE>58072</ZIPCODE>

<COUNTRY>USA</COUNTRY>

<PHNUMBR1>55532336790000</PHNUMBR1>

<PHNUMBR2>55551161817181</PHNUMBR2>

<FAX>55584881000000</FAX>

<UPSZONE>red</UPSZONE>

<SHIPMTHD>PICKUP</SHIPMTHD>

<TAXSCHID>USALLEXMPT-0</TAXSCHID>

<PRBTADCD>PRIMARY</PRBTADCD>

<PRSTADCD>PRIMARY</PRSTADCD>

<STADDRCD>PRIMARY</STADDRCD>

<SLPRSNID>GREG E.</SLPRSNID>

<SALSTERR>TERRITORY 6</SALSTERR>

<COMMENT1>comment1</COMMENT1>

<COMMENT2>comment2</COMMENT2>

<PYMTRMID>Net 30</PYMTRMID>

<CHEKBKID>PAYROLL</CHEKBKID>

P A R T 2 E C O N N E C T S C H E M A A N D X M L D O C U M E N T S

34 E C O N N E C T P R O G R A M M E R ’ S G U I D E

<KPCALHST>0</KPCALHST>

<RMCSHACTNUMST>000-1100-00</RMCSHACTNUMST>

<UseCustomerClass>0</UseCustomerClass>

<UpdateIfExists>1</UpdateIfExists>

</taUpdateCreateCustomerRcd>

</RMCustomerMasterType>

</eConnect>

Delete a customer address

The following XML example shows how to use an eConnect XML document to
delete a customer address. Note the following characteristics of the document:

• The document contains a single <RMDeleteCustomerAddressType>
transaction type schema. The schema specifies the XML node you use to
identify an address record.

• Notice how the <RMDeleteCustomerAddress> schema includes a single
<taDeleteCustomerAddress> XML node.

• Notice how the elements of the <taDeleteCustomerAddress> XML node are
populated with values that identify the customer address you want to delete.

<eConnect xmlns:dt="urn:schemas-microsoft-com:datatypes">

<RMDeleteCustomerAddressType>

<taDeleteCustomerAddress>

<CUSTNMBR>AARONFIT0001</CUSTNMBR>

<ADRSCODE>WAREHOUSE</ADRSCODE>

</taDeleteCustomerAddress>

</RMDeleteCustomerAddress>

</eConnect>

Retrieve a customer

The following XML example shows how to use an eConnect XML document to
retrieve a customer record. Note the following characteristics of the document:

• The document contains a single <RQeConnectOutType> transaction type
schema. The schema contains XML nodes you use to specify an existing
customer record.

• Notice how the <RQeConnectOutType> schema includes
<eConnectProcessInfo> and <eConnectOut> nodes. You use these nodes to
specify the customer and how you want to retrieve the data for the customer
record.

• Notice how the <Outgoing> element of the <eConnectProcessInfo> node is set
to TRUE. You use TRUE to specify that this is a request for an existing record.
Also notice how the <MessageID> element describes the record type.

• Notice that the <DOCTYPE> element of the <eConnectOut> node specifies the
value Customer. The value identifies the type of document in the
eConnect_Out_Setup table that you want to use to retrieve the record.

E C O N N E C T P R O G R A M M E R ’ S G U I D E 35

C H A P T E R 5 X M L D O C U M E N T E X A M P L E S

• Notice how the <OUTPUTTYPE> element specifies the value of 2. A value of 2
instructs eConnect to return complete customer record for the specified
customer.

• Notice how the <INDEX1TO> and <INDEX1FROM> elements specify the ID of
the customer you want to retrieve. To retrieve a customer, the INDEX1 column
in the eConnect_Out_Setup table requires you to submit a CUSTNMBR value.
To retrieve a single record, you use the same ID value to populate the
<INDEX1TO> and <INDEX1FROM> elements.

• The values that populate the <FORLOAD>, <FORLIST>, and <ACTION>
elements instruct eConnect to return the document to the caller and not create a
record in the eConnect_Out table.

<eConnect xmlns:dt="urn:schemas-microsoft-com:datatypes">

<RQeConnectOutType>

<eConnectProcessInfo>

<Outgoing>TRUE</Outgoing>

<MessageID>Customer</MessageID>

</eConnectProcessInfo>

<eConnectOut>

<DOCTYPE>Customer</DOCTYPE>

<OUTPUTTYPE>2</OUTPUTTYPE>

<INDEX1TO>ADAMPARK0001</INDEX1TO>

<INDEX1FROM>ADAMPARK0001</INDEX1FROM>

<FORLOAD>0</FORLOAD>

<FORLIST>1</FORLIST>

<ACTION>0</ACTION>

<ROWCOUNT>0</ROWCOUNT>

<REMOVE>0</REMOVE>

</eConnectOut>

</RQeConnectOutType>

</eConnect>

Assign a document number to a sales order

The following XML example shows how to use an eConnect XML document to
create a sales order. In addition, the document uses eConnect to query Microsoft
Dynamics GP for a sales order number. The query result populates the
<SOPNUMBE> element of the document. Note the following characteristics of the
document:

• The document contains a single <SOPTransactionType> transaction type
schema. The schema specifies the XML nodes you use to create a sales order.

• Notice how the document uses a <taSopLineIvcInsert> node to create a line
item and a <taSopHdrIvcInsert> node for the header of the sales order. The
<taSopLineIvcInsert_Items> node enables the document to include one or more
line items.

• Notice how the <SOPNUMBE> element of the <taSopLineIvcInsert> and
<taSopHdrIvcInsert> nodes do not specify a value. The element will be
populated when the query obtains the new sales order number.

P A R T 2 E C O N N E C T S C H E M A A N D X M L D O C U M E N T S

36 E C O N N E C T P R O G R A M M E R ’ S G U I D E

• Notice how the <SOPTYPE> element of the <taSopLineIvcInsert> and
<taSopHdrIvcInsert> nodes are populated the with the value of 2. The value
specifies that the document is a sales order.

• Notice that the <DOCID> element of the <taSopHdrIvcInsert> node is
populated with the value STDORD. The value specifies the type of sales order
you want to create.

• The values you use in the <SOPTYPE> and <DOCID> elements determine the
type of Microsoft Dynamics GP document number that is requested for this
sales order.

<eConnect xmlns:dt="urn:schemas-microsoft-com:datatypes">

<SOPTransactionType>

<taSopLineIvcInsert_Items>

<taSopLineIvcInsert>

<SOPTYPE>2</SOPTYPE>

<SOPNUMBE></SOPNUMBE>

<CUSTNMBR>ALTONMAN0001</CUSTNMBR>

<DOCDATE>2007-03-03</DOCDATE>

<LOCNCODE>WAREHOUSE</LOCNCODE>

<ITEMNMBR>ACCS-CRD-12WH</ITEMNMBR>

<UNITPRCE>9.95</UNITPRCE>

<XTNDPRCE>19.90</XTNDPRCE>

<QUANTITY>2</QUANTITY>

<MRKDNAMT>0</MRKDNAMT>

<COMMNTID>TEST</COMMNTID>

<COMMENT_1>cmt1</COMMENT_1>

<COMMENT_2>cmt2</COMMENT_2>

<COMMENT_3>cmt3</COMMENT_3>

<COMMENT_4>cmt4</COMMENT_4>

<ITEMDESC>yes</ITEMDESC>

<TAXAMNT>0</TAXAMNT>

<QTYONHND>0</QTYONHND>

<QTYRTRND>0</QTYRTRND>

<QTYINUSE>0</QTYINUSE>

<QTYINSVC>0</QTYINSVC>

<QTYDMGED>0</QTYDMGED>

<NONINVEN>0</NONINVEN>

<LNITMSEQ>0</LNITMSEQ>

<DROPSHIP>0</DROPSHIP>

<QTYTBAOR>0</QTYTBAOR>

<DOCID>STDORD</DOCID>

<SALSTERR>TERRITORY 2</SALSTERR>

<SLPRSNID>GREG E.</SLPRSNID>

</taSopLineIvcInsert>

</taSopLineIvcInsert_Items>

<taSopHdrIvcInsert>

<SOPTYPE>2</SOPTYPE>

<DOCID>STDORD</DOCID>

<SOPNUMBE></SOPNUMBE>

<ORIGNUMB>0</ORIGNUMB>

<ORIGTYPE>0</ORIGTYPE>

<TAXSCHID>USASTCITY-6*</TAXSCHID>

<FRTSCHID>USASTCITY-6*</FRTSCHID>

<MSCSCHID>USASTCITY-6*</MSCSCHID>

E C O N N E C T P R O G R A M M E R ’ S G U I D E 37

C H A P T E R 5 X M L D O C U M E N T E X A M P L E S

<SHIPMTHD>UPS GROUND</SHIPMTHD>

<TAXAMNT>0</TAXAMNT>

<LOCNCODE>WAREHOUSE</LOCNCODE>

<DOCDATE>2007-03-03</DOCDATE>

<FREIGHT>3.00</FREIGHT>

<MISCAMNT>2.00</MISCAMNT>

<TRDISAMT>0</TRDISAMT>

<DISTKNAM>0</DISTKNAM>

<MRKDNAMT>0</MRKDNAMT>

<CUSTNMBR>ALTONMAN0001</CUSTNMBR>

<CUSTNAME>Alton Manufacturing</CUSTNAME>

<CSTPONBR>4859</CSTPONBR>

<ShipToName>SERVICE</ShipToName>

<ADDRESS1>P.O. Box 3333</ADDRESS1>

<CNTCPRSN>person1</CNTCPRSN>

<FAXNUMBR>55553200810000</FAXNUMBR>

<CITY>Detroit</CITY>

<STATE>MI</STATE>

<ZIPCODE>48233-3343</ZIPCODE>

<COUNTRY>USA</COUNTRY>

<PHNUMBR1>55553289890000</PHNUMBR1>

<PHNUMBR3>55553200810000</PHNUMBR3>

<SUBTOTAL>19.90</SUBTOTAL>

<DOCAMNT>24.90</DOCAMNT>

<PYMTRCVD>0</PYMTRCVD>

<SALSTERR>TERRITORY 2</SALSTERR>

<SLPRSNID>GREG E.</SLPRSNID>

<USER2ENT>sa</USER2ENT>

<BACHNUMB>TEST</BACHNUMB>

<PRBTADCD>PRIMARY</PRBTADCD>

<PRSTADCD>SERVICE</PRSTADCD>

<FRTTXAMT>0</FRTTXAMT>

<MSCTXAMT>0</MSCTXAMT>

<ORDRDATE>2007-03-03</ORDRDATE>

<MSTRNUMB>0</MSTRNUMB>

<NONINVEN>0</NONINVEN>

<PYMTRMID>2% 10/Net 30</PYMTRMID>

<USINGHEADERLEVELTAXES>0</USINGHEADERLEVELTAXES>

<CREATECOMM>0</CREATECOMM>

<CREATETAXES>1</CREATETAXES>

<DEFTAXSCHDS>0</DEFTAXSCHDS>

<FREIGTBLE>1</FREIGTBLE>

<MISCTBLE>1</MISCTBLE>

</taSopHdrIvcInsert>

</SOPTransactionType>

</eConnect>

38 E C O N N E C T P R O G R A M M E R ’ S G U I D E

P
A

R
T

 3
: .N

E
T

 D
E

V
E

LO
P

M
E

N
T

40 E C O N N E C T P R O G R A M M E R ’ S G U I D E

Part 3: .NET Development
This section of the documentation discusses how to include eConnect in a .NET
development project. The eConnect runtime includes .NET assemblies that enable
you to view, create, update, and delete or void Microsoft Dynamics GP data from a
Microsoft .NET solution. The following sections describe how to add and use the
eConnect .NET assemblies:

• Chapter 6, “.NET Development Overview,” introduces the eConnect assemblies
and namespaces. You use these assemblies and namespaces to add eConnect to
your .NET development project.

• Chapter 7, “eConnect and .NET,” describes how to use classes in the
Microsoft.Dynamics.GP.eConnect namespace. You use classes from the
Microsoft.Dynamics.GP.eConnect namespace to send and request eConnect
XML documents from your .NET solution.

• Chapter 8, “Serialization,” describes how to use the classes in the
Microsoft.Dynamics.GP.eConnect.Serialization namespace. You use the
serialization classes to create .NET objects that represent eConnect XML
documents.

• Chapter 9, “eConnect Integration Service,” describes how to use the eConnect
Integration Service from a .NET application. You use the service to send and
request eConnect XML documents from your .NET solution.

E C O N N E C T P R O G R A M M E R ’ S G U I D E 41

Chapter 6: .NET Development Overview
This section of the documentation describes how to add an eConnect .NET
assembly to a Microsoft Visual Studio development project. To access the eConnect
business objects from a .NET solution, you must add one or more of the eConnect
.NET assemblies to your development project. The following topics describe how to
add an eConnect assembly and namespace to a project in Visual Studio:

• eConnect and .NET
• Adding a reference
• Including the namespace
• Specifying configuration settings
• Tracing an eConnect .NET application

eConnect and .NET

A .NET assembly is the fundamental building block of all .NET applications. An
assembly includes the types and resources that produce a logical unit of
functionality. In eConnect, an assembly is stored as a .dll file.

To add eConnect functionality to a .NET solution, you use one or more of the
following assemblies:

• Microsoft.Dynamics.GP.eConnect.dll
• Microsoft.Dynamics.GP.eConnect.Serialization.dll

The eConnect installer typically places these files in the directory c:\Program
Files\Microsoft Dynamics\eConnect 12.0\Objects\Dot Net.

Each eConnect assembly contains an eConnect namespace. The values of each
namespace matches the name of the assembly where it is found. For example, the
Microsoft.Dynamics.GP.eConnect.dll assembly is where you find the
Microsoft.Dynamics.GP.eConnect namespace.

Each eConnect namespace is a collection of related classes and enumerations. For
example, the Microsoft.Dynamics.GP.eConnect namespace includes the
eConnectMethods class as well as other classes and enumerations.

To use an eConnect class in a .NET development project, use Visual Studio to add a
reference to the assembly that contains the namespace for that class.

To use the eConnect .NET assemblies, you must have Microsoft .NET Framework 2.0, or
Microsoft Visual Studio 2005 or later installed on your computer.

Adding a reference

To add an eConnect class or enumeration to your .NET development project, use
Visual Studio to add a reference to the eConnect assembly. To add a reference,
complete the following steps:

1. Open the Add Reference window.
From the Visual Studio Project menu, click Add Reference. The Add Reference
window opens and displays the .NET tab.

P A R T 3 . N E T D E V E L O P M E N T

42 E C O N N E C T P R O G R A M M E R ’ S G U I D E

2. Find the assembly.
In the .NET tab, scroll the list of assemblies and click the eConnect assembly
name. For example, click Microsoft.Dynamics.GP.eConnect.

3. Add a reference to the assembly.
To add the reference, click OK. The specified assembly is added to the list of
references for your Visual Studio project. The Add Reference window closes.

Including the namespace

Each eConnect assembly defines a namespace for the classes that it contains. A
.NET namespace is a second organizational method that groups type names in a
effort to reduce the chance of a name collision. The eConnect namespaces are as
follows:

• Microsoft.Dynamics.GP.eConnect
• Microsoft.Dynamics.GP.eConnect.Serialization

You typically includes the namespace when you specify the type of an eConnect
object. To demonstrate the use of a namespace, the following Visual Basic example
instantiates a GetSopNumber object. Notice how the namespace and class name are
used to specify the object type:

'Use GetSopNumber from the Microsoft.Dynamics.GP.eConnect

'namespace

Dim SopNumber As New Microsoft.Dynamics.GP.eConnect.GetSopNumber

To simplify your code, use the Visual Basic Imports statement or C# using
statement to specify the namespace from a referenced assembly. These statements
eliminate the need to include the namespace when you specify an object type.

The following Visual Basic example uses the Imports statement to add the
Microsoft.Dynamics.GP.eConnect namespace to the .vb file of a project. You
typically add the Imports statement to the top of the file where you are using the
members of that namespace:

Imports Microsoft.Dynamics.GP.eConnect

The following C# example shows how to add a using statement to include
namespace information in the .cs file of a project. You typically add the using
statement to the top of the file:

using Microsoft.Dynamics.GP.eConnect;

After you use the Imports or using statements to include a namespace, you can use
the eConnect class name to specify the type of an object. The following Visual Basic
example shows how to import the Microsoft.Dynamics.GP.eConnect namespace
and then instantiate a GetSopNumber object.

Imports Microsoft.Dynamics.GP.eConnect

'Use GetSopNumber from the Microsoft.Dynamics.GP.eConnect namespace

Dim SopNumber As New GetSopNumber

E C O N N E C T P R O G R A M M E R ’ S G U I D E 43

C H A P T E R 6 . N E T D E V E L O P M E N T O V E R V I E W

If you are using the eConnect Integration Service you can use Imports or using
statements for the service reference. The following Visual Basic example shows how
to import the service reference for an application named VbTestApp.

Imports vbServiceTestApp.eConnectIntegrationService

The following C# code example shows how to add a using statement for a service
reference to an application named ServiceTestApp.

using ServiceTestApp.eConnectIntegrationService;

Specifying configuration settings

To optimize the performance of your application, you might want to customize how
your application interacts with the eConnect Integration Service. For example, if
you use eConnect to send large eConnect XML documents, you might want to
increase the settings that specify maximum message size.

To specify configuration settings, you add one or more key nodes to the
<appSetting> node of the configuration file. The configuration file you update
depends upon whether you are using a reference to the
Microsoft.Dynamics.GP.eConnect assembly or a service reference to the eConnect
Integration Service.

To specify a configuration setting, you add a <key> node to the appSetting section
of the configuration file. In the key node, you specify the name of the configuration
setting and the value to use. The eConnect Integration Service enables you to
supply custom values for the following configuration settings.

Reference type Configuration file Description

Reference <ApplicationName>.exe.co
nfig

Add configuration keys to the application
configuration file of your .NET application.

Service reference Microsoft.Dynamics.GP.eC
onnect.Service.exe.config

Add configuration keys to the configuration
file of the eConnect Integration Service. The
configuration file for the service is typically
found in the folder C:\Program
Files\Microsoft Dynamics\eConnect
12.0\Service

Name Description

MaxReadQuotaSize Specifies the maximum size of read messages.

MaxReceivedMessageSize Specifies the maximum size of an XML document.

ProcTimeOut Specifies the number of seconds to wait before a time out occurs

RequireProxyService Specifies whether to use the identity of the logged on user or the
service identity when accessing SQL server. Set the value to true
when you want the application to use the service identity.
If your application includes a service reference to eConnect, the
application always uses the service identity to access SQL. The
value of this configuration setting is ignored.

SendTimeout Specifies the length of time to wait when connecting to the
eConnect Integration Service. Used when the
RequiredProxyService is set to True.

ServiceAddress Specifies the URL of the eConnect Integration Service.

ServiceOperationTimeout Specifies the length of time to wait for an operation to complete.
Used when the RequiredProxyService is set to True.

P A R T 3 . N E T D E V E L O P M E N T

44 E C O N N E C T P R O G R A M M E R ’ S G U I D E

For information about the data type and default value of each configuration setting,
see Configuration Class in the eConnect .NET Reference section of the eConnect
help file.

If you add configuration settings to the configuration file of your application, you
can also use the Configuration class in the Microsoft.Dynamics.GP.eConnect
namespace to programmatically set configuration settings. Any configuration value
set by the Configuration class override the value set in your application
configuration file.

How to specify
configuration setting
for an eConnect
enabled .NET
application.

The following steps show how to add configuration settings to an eConnect .NET
application. To begin, open the configuration file in a text editor.

Before you edit the Microsoft.Dynamics.GP.eConnnect.Service.exe.config file, make a copy
of the file and store the file in a safe location. If you encounter problems with the service, use
the saved copy to restore the existing service configuration.

Adding appSettings to the configuration file
To use custom configuration settings, add an <appSettings> node to the
<configuration> of the application or service configuration file.

The following XML example shows how to add appSettings to an application
configuration file.

<?xml version="1.0" encoding="utf-8" ?>

<configuration>

<appSettings>

</appSettings>

</configuration>

Adding configuration values
To specify custom configuration settings, add individual key and value information
for each setting.

The following XML example adds configuration information for the SendTimeout,
MaxReadQuotaSize, and MaxReceivedMessageSize. Notice how
MaxReadQuotaSize and MaxReceivedMessageSize use the maximum value for
those configuration settings.

<appSettings>

<add key="SendTimeout" value="60" />

<add key="MaxReadQuotaSize" value="2147483647" />

<add key="MaxReceivedMessageSize" value="2147483647" />

</appSettings>

Saving the configuration
To use your custom configuration settings, save the configuration file and restart
your application.

TransactionIsolationLevel Specifies the isolation level of the transaction. The typical
transaction isolation level for eConnect is ReadUncommitted.

TransactionTimeoutSeconds Specifies the length of time to wait for a SQL transaction to
complete.

Name Description

E C O N N E C T P R O G R A M M E R ’ S G U I D E 45

C H A P T E R 6 . N E T D E V E L O P M E N T O V E R V I E W

If you edited the Microsoft.Dynamics.GP.eConnnect.Service.exe.config file. Stop
and restart the eConnect Integration Service before restarting your application.

Tracing an eConnect .NET application

When using eConnect with your .NET application, you might want to use tracing to
monitor the execution of your application. The classes in the
Microsoft.Dynamics.GP.eConnect namespace support .NET tracing.

To enable tracing, you add the eConnectTraceSource and trace listeners to the
application configuration file. The configuration file you update depends upon
whether you are using a reference to the Microsoft.Dynamics.GP.eConnect
assembly or a service reference to the eConnect Integration Service.

When you add eConnectTraceSource to the configuration file, the eConnect .NET
interface generates trace messages that can be collected and recorded in specified
logs, or files.

To collect and record tracing information, you must specify the type of output you
want to record. The eConnect trace source has a property named switchValue that
you use to specify the type of tracing data to collect. Set switchValue to one of the
following values.

Tracing in eConnect supports the same trace listeners as other .NET applications. A
trace listener is the mechanism that collects and records trace information. To
specify where trace information is recorded, use one of the following trace listeners.

Reference type Configuration file Description

Reference <ApplicationName>.exe.co
nfig

Add the trace source and listeners to the
application configuration file of your
application.

Service reference Microsoft.Dynamics.GP.eC
onnect.Service.exe.config

Add the trace source and listeners to the
configuration file of the eConnect
Integration Service. The configuration file
for the service is typically found in the
folder C:\Program Files\Microsoft
Dynamics\eConnect 12.0\Service

switchValue Description

Error All exceptions are recorded.

Information Records important and successful milestones of application execution
regardless of whether the application is working properly or not.

Off Disable tracing for the application.

Verbose Records events that mark successful milestones. Includes low level events
for both user code and the service. Useful for debugging or for application
optimization.

Name Description

ConsoleTraceListener Directs tracing output to either the standard output or the
standard error stream.

DelimitedListTraceListener Directs tracing output to a text writer, such as a stream writer, or
to a stream, such as a file stream. The trace output is in a
delimited text format that uses a specified delimiter.

EventLogTraceListener Directs tracing output to a specified event log.

P A R T 3 . N E T D E V E L O P M E N T

46 E C O N N E C T P R O G R A M M E R ’ S G U I D E

The most commonly used trace listeners are the TextWriterTraceListener and the
XmlWriterTraceListener. These listeners record trace information to a file. For more
information about these or the other trace listeners, refer to the documentation for
the .NET framework.

For information about how to get tracing information from the eConnect
Integration Service, see eConnect Integration Service tracing in the Troubleshooting
section of the eConnect Installation and Administration Guide.

How to enable tracing
for an eConnect
enabled .NET
application.

The following steps show how to add tracing to an eConnect .NET application. To
begin, open the configuration file in a text editor.

Before you edit the Microsoft.Dynamics.GP.eConnnect.Service.exe.config file, make a copy
of the file and store the file in a safe location. If you encounter problems with the service, use
the saved copy to restore the existing service configuration.

Adding a trace source
To enable eConnect tracing, add a trace source named eConnectTraceSource to the
system. diagnostics section of the configuration file. Use the switchValue attribute
of the source to specify the type of information you want logged. The
eConnectTraceSource logs trace information that is available in the classes and
methods of the Microsoft.Dynamics.GP.eConnect namespace.

Typically, the Microsoft.Dynamics.GP.eConnect.Service.exe.config file includes the
eConnectTraceSource. To enable tracing, change the switchValue of the
eConnectTraceSource to Error, Information, or Verbose.

The following XML example adds the eConnectTraceSource to an application
configuration file. Notice how switchValue is set to Verbose.

<system.diagnostics>

<sources>

<source name="eConnectTraceSource" switchValue="Verbose">

</source>

<trace autoflush="true" />

</system.diagnostics>

Adding listeners
Add the listener you want to use to log the trace results. Add a <sharedListeners>
node to the <system.diagnostics> section of you application file. Add and configure
the listeners you want to use.

Typically, the Microsoft.Dynamics.GP.eConnect.Service.exe.config file includes
listeners. Update the initializeData attribute of the eConnectTextTracelistener or the
eConnectXmlTracelistener to specify a folder and file name for the trace file.

TextWriterTraceListener Directs output to an instance of the TextWriter class or to
anything that is a Stream class. It can also write to the console or
to a file.

XmlWriterTraceListener Directs tracing output as XML-encoded data to a TextWriter or to
a Stream, such as a FileStream. Typically, output is recorded in
an XML file.

Name Description

E C O N N E C T P R O G R A M M E R ’ S G U I D E 47

C H A P T E R 6 . N E T D E V E L O P M E N T O V E R V I E W

The following XML example shows how to add a shared listener to your application
configuration file. Notice how a TextWriterTraceListener is specified. The
intializeData attribute specifies the location and name of the log file.

<sharedListeners>

<add initializeData="c:\TEMP\eConnect.log"

type="System.Diagnostics.TextWriterTraceListener,

System, Version=2.0.0.0, Culture=neutral,

PublicKeyToken=b77a5c561934e089"

name="eConnectTextTracelistener">

<filter type="" />

</add>

</sharedListeners>

Adding a listener to the source
To use the listener, add the listener to the listeners of the eConnectTraceSource.
Specify the name of the listener you added to the SharedListeners.

Typically, the Microsoft.Dynamics.GP.eConnect.Service.exe.config file includes a
listener named eConnectTextTracelistener with the eConnectTraceSource. You do
not need to make any changes to use this listener. To use the
eConnectXmlTracelistener, add that listener to listeners node of the
eConnectTraceSource.

The following XML example adds the shared listener named
eConnectTextTracelistener to the eConnectTraceSource in an application
configuration file.

<source name="eConnectTraceSource" switchValue="Verbose">

<listeners>

<add name="eConnectTextTracelistener">

<filter type="" />

</add>

</listeners>

</source>

Collecting trace data
Save the changes to the application configuration file. If you made change to the
Microsoft.Dynamics.GP.eConnect.Service.exe.config, stop and restart the eConnect
Integration Service.

To generate trace data, start your application and perform the operations you want
to trace. To view the result, open the specified log or file and review the trace
information.

Stopping the trace
When you are done collecting trace information. You should disable the
eConnectTraceSource. In the configuration file, set the switchValue attribute of the
eConnectTraceSource to Off.

<source name="eConnectTraceSource" switchValue="Off">

Example
The following XML example shows the system.diagnostics node from an
application configuration file. Notice how eConnectTraceSource has been added

P A R T 3 . N E T D E V E L O P M E N T

48 E C O N N E C T P R O G R A M M E R ’ S G U I D E

with a switchValue set to Verbose. Also notice how two listeners have been
specified for eConnectTraceSource. The eConnectTextTraceListener logs trace
information as text to a file name eConnect.log. The eConnectXmlTracelistener logs
trace information as XML in a file named eConnectLog.xml.

<system.diagnostics>

<sources>

<source name="eConnectTraceSource" switchValue="Verbose">

<listeners>

<add name="eConnectXmlTracelistener">

<filter type="" />

</add>

<add name="eConnectTextTracelistener">

<filter type="" />

</add>

</listeners>

</source>

</sources>

<sharedListeners>

<add initializeData="c:\TEMP\eConnect.log"

type="System.Diagnostics.TextWriterTraceListener,

System, Version=2.0.0.0, Culture=neutral,

PublicKeyToken=b77a5c561934e089"

name="eConnectTextTracelistener">

<filter type="" />

</add>

<add initializeData="c:\TEMP\eConnectLog.xml"

type="System.Diagnostics.XmlWriterTraceListener,

System, Version=2.0.0.0, Culture=neutral,

PublicKeyToken=b77a5c561934e089"

name="eConnectXmlTracelistener">

<filter type="" />

</add>

</sharedListeners>

<trace autoflush="true" />

</system.diagnostics>

E C O N N E C T P R O G R A M M E R ’ S G U I D E 49

Chapter 7: eConnect and .NET
This section of the documentation describes how to use the classes in the
Microsoft.Dynamics.GP.eConnect assembly. The following topics show how to use
these classes to enable your .NET application to create, update, retrieve, and delete
or void Microsoft Dynamics GP data.

• Microsoft.Dynamics.GP.eConnect
• Using CreateEntity for new records
• Retrieving XML documents with GetEntity
• Retrieving a document number
• Returning a document number
• Retrieving a sales document number
• Returning a sales document number
• eConnect exception handling

Microsoft.Dynamics.GP.eConnect

To use eConnect to retrieve or update data from Microsoft Dynamics GP, add the
Microsoft.Dynamics.GP.eConnect assembly and namespace to your .NET project.

To use the classes in the Microsoft.Dynamics.GP.eConnect namespace, you must add a
reference to the Microsoft.Dynamics.GP.eConnect assembly to your .NET project. For
information about how to add a reference, see Adding a reference.

The Microsoft.Dynamics.GP.eConnect namespace includes the following classes:.

Class Description

Configuration Specifies the properties you use to configure an eConnect application.

DocumentRollback Enables you to create a collection of Microsoft Dynamics GP document
numbers. You use the collection with the RollBackDocumentList method
of the GetNextDocNumbers class to return unused numbers.

eConnectException The eConnectException class enables you to catch or throw eConnect-
specific errors. If a method in the eConnectMethods class encounter an
error, the method throws an eConnectException.

eConnectMethods The eConnectMethods class allows you to send and receive XML that
represent eConnect documents.

EnumTypes The EnumTypes class defines enumerations that you use to connect to
the eConnect business objects. You typically use these enumerations as
parameters for the eConnect_EntryPoint and eConnect_Requester
methods of the eConnectMethods class.

GetNextDocNumbers Enables you to get the next available number for several types of
Microsoft Dynamics GP documents.

GetSopNumber Enables you to retrieve the next available number for a sales document.
This class also allows you to return a SOP number that was retrieved but
not used.

RollBackDocument Specifies a single Microsoft Dynamics GP document number. Use a
RollBackDocument object when you need access to an individual record
in the arraylist produced by the RollBackDocuments method of the
DocumentRollback class.

P A R T 1 E C O N N E C T O V E R V I E W

50 E C O N N E C T P R O G R A M M E R ’ S G U I D E

Using CreateEntity for new records

The eConnectMethods class enables your .NET application to add new data records
in Microsoft Dynamics GP. To create a record, use the following methods:

The eConnectMethods class also includes methods to update or delete existing
records in Microsoft Dynamics GP. To use these methods, you must supply the
eConnect XML document for the specified operation and document type.

To create, update, and delete or void a record in Microsoft Dynamics GP, you must
create an XML string for your eConnect XML document. The following are the most
common techniques for creating this string.

• Construct a string that contains the eConnect XML schema and node tags that
are required for your operation. In addition, include the XML tags and values
for the XML elements that you want to populate with data.

• Load text from a file or other data store that contains an existing eConnect XML
document into a .NET XmlDocument object. Use the OuterXML property of the
XmlDocument class to convert the XML document to a string.

To work with eConnect, the text that is loaded into the XmlDocument object must be a
valid eConnect XML document.

• Use classes from the eConnect Serialization namespace to construct an object
that represents an eConnect XML document. Use a .NET XmlSerializer and a
XmlDocument object to convert your document object to a string.

For more information about eConnect XML documents, see .eConnect XML
document structure.

The following steps show how to use the CreateEntity method to create a record
using XML from a textbox control.

How to add a new
record to Microsoft
Dynamics GP.

Instantiate an eConnectMethods object
To begin, instantiate an eConnectMethods object. The following Visual Basic
example shows how to instantiate an eConnectMethods object:

'Instantiate an eConnectMethods object

Dim eConnectObject As New eConnectMethods

Method Description

CreateEntity Creates a record using information from an eConnect XML
document. Use CreateEntity to add data entities like customers or
vendors. You specify the type of record to create with a parameter
that represents an eConnect XML document. If the operation
succeeds, the method returns True as a boolean value.

CreateTransactionEntity Create a transaction using information from an eConnect XML
document. Use CreateTransactionEntity for transaction documents
like sales orders or inventory transactions. You specify the type of
transaction to create with a parameter that represents an eConnect
XML document. If the operation succeeds, the method returns an
XML string that represents the eConnect XML document that was
created.

E C O N N E C T P R O G R A M M E R ’ S G U I D E 51

C H A P T E R 7 E C O N N E C T A N D . N E T

Load the eConnect XML document
The following Visual Basic example shows how to use the XML text from a textbox
control as the source of the eConnect XML document. Notice how text from the
specified control is loaded into a .NET XmlDocument object.

'Load the text from the textbox control into an XmlDocument object

Dim xmlDoc As XmlDocument

xmlDoc.LoadXml(XmlDoc_TextBox.Text)

Create an eConnect connection string
The CreateEntity method requires an eConnect connection string. You use the
connection string to specify the Dynamics GP data server and the company
database.

For information about eConnect connection strings, see the eConnect Installation
chapter of the eConnect Installation and Administration Guide.

The following Visual Basic example shows how to creates a connection string:

'Set the connection string

'This connection string uses integrated security to connect to the

'TWO database on the local computer

Dim ConnectionString As String

ConnectionString = "Data Source=localhost;Integrated Security=SSPI;" _

& "Persist Security Info=False;Initial Catalog=TWO;"

Submit the eConnect document
Use the CreateEntity method to submit the document to the eConnect business
objects. To call the CreateEntity method, supply parameters that specify the
connection string, and the eConnect XML document string.

The CreateEntity method returns a boolean value that indicates whether the XML
document was successfully submitted. A return value of True indicates the
operation succeeded.

The following Visual Basic example uses the CreateEntity method to submit an
eConnect XML document. Notice the following:

• The ConnectionString parameter specifies the Dynamics GP data server and the
company database.

• The XML string parameter is created using the OuterXml property of the
XmlDocument object.

'If eConnectResult is TRUE, the XML document was successfully submitted

Dim eConnectResult As Boolean

eConnectResult = eConnectObject.CreateEntity(ConnectionString, _

xmlDoc.OuterXml)

Retrieving XML documents with GetEntity

The eConnectMethods class includes a method named GetEntity that enables you to
retrieve data from Microsoft Dynamics GP. The GetEntity method gives you
programmatic access to the eConnect Transaction Requester. You use the GetEntity
method to get a string that represents a Transaction Requester XML document.

P A R T 1 E C O N N E C T O V E R V I E W

52 E C O N N E C T P R O G R A M M E R ’ S G U I D E

The Transaction Requester limits the types of documents you can retrieve with the
GetEntity method. To retrieve a document, that document type must be specified in
the eConnect_Out_Setup table of your company database. To see the default set of
document types, see Requester document types.

To specify the data to retrieve, create an XML string that represents a Transaction
Requester query document. The following are the most common techniques for
creating a string that represents a Transaction Requester query document.

• Construct a string that contains the XML tags and values required by the
Transaction Requester for the specified document type.

• Load text from a file or other data store that contains an existing Transaction
Requester query into a .NET XmlDocument. Use the OuterXML property of the
XmlDocument class to convert the XML document to a string.

To work with eConnect, the text that is loaded into the XmlDocument object must be a
valid Transaction Requester query. For more information about the structure of a
Transaction Requester query document, see Retrieve a customer.

• Use the eConnectOut, RQeConnectOutType, and eConnectType classes from
the eConnect Serialization namespace to construct an object that represents a
Transaction Requester query. Use a .NET XmlSerializer and a XmlDocument
object to convert the query document to a string.

The following steps show how to use the GetEntity method to retrieve a transaction
requester document for a customer.

How to retrieve an
eConnect Transaction
Requester XML
document.

Instantiate an eConnectMethods object
To begin, instantiate an eConnectMethods object. The following Visual Basic
example shows how to instantiate an eConnectMethods object:

'Instantiate an eConnectMethods object

Dim eConnectObject As New eConnectMethods

Create a Transaction Requester document
The following Visual Basic example shows how to use classes from the eConnect
serialization namespace to construct an object that requests a single customer
record. Notice how the INDEX1FROM and INDEX1TO fields specify the ID of the
customer, the OUTPUTTYPE field specifies the customer master document, and the
FORLIST field specifies to return the document to the caller. Also notice how the
.NET XmlSerializer is used to load the document object into a .NET XmlDocument.

'**Create an eConnect requestor document that specifies a single customer**

'Create the requestor node

Dim myRequest As New eConnectOut()

With myRequest

.DOCTYPE = "Customer"

.OUTPUTTYPE = 1

.INDEX1FROM = "AARONFIT0001"

.INDEX1TO = "AARONFIT0001"

.FORLIST = 1

End With

E C O N N E C T P R O G R A M M E R ’ S G U I D E 53

C H A P T E R 7 E C O N N E C T A N D . N E T

'Create the requestor schema document type

'Since the eConnect document requires an array, create an

‘array of RQeConnectOutType

Dim econnectOutType() As RQeConnectOutType = _

New RQeConnectOutType(0) {New RQeConnectOutType}

econnectOutType(0).eConnectOut = myRequest

'Create the eConnect document type

Dim eConnectDoc As New eConnectType()

eConnectDoc.RQeConnectOutType = econnectOutType

'**Serialize the eConnect document**

'Create a memory stream for the serialized eConnect document

Dim memStream As New MemoryStream()

'Create an Xml Serializer and serialize the eConnect document

‘to the memory stream

Dim serializer As New XmlSerializer(GetType(eConnectType))

serializer.Serialize(memStream, eConnectDoc)

'Reset the position property to the start of the buffer

memStream.Position = 0

'**Load the serialized Xml into an Xml document**

Dim xmldoc As New XmlDocument()

xmldoc.Load(memStream)

Create an eConnect connection string
The GetEntity method requires that you supply an eConnect connection string. Use
the connection string to specify the Dynamics GP data server and the company
database.

For information about eConnect connection strings, see the eConnect Installation
chapter of the eConnect Installation and Administration Guide.

The following Visual Basic code example shows how to creates a connection string:

'Create an eConnect connection string

Dim connectionString As String

connectionString = "data source=localhost; initial catalog=TWO; “ _

& “integrated security=SSPI; persist security info=False; “ _

& “packet size=4096"

Retrieve the XML document
Use the GetEntity method to populate a string that represents the XML document
that the Transaction Requester retrieved. To call the method, supply parameters
that specify the connection string, and an XML string that specifies the data you
want to retrieve.

The following Visual Basic example uses the GetEntity method to retrieve a
customer XML document. Notice the following:

• The ConnectionString parameter specifies the Dynamics GP data server and the
company database.

P A R T 1 E C O N N E C T O V E R V I E W

54 E C O N N E C T P R O G R A M M E R ’ S G U I D E

• The XML string parameter is created using the OuterXml property of the
XmlDocument object.

'Retrieve the specified document

Dim customerDoc = eConnectMethods.GetEntity(connectionString, _

EnumTypes.ConnectionStringType.SqlClient, xmldoc.OuterXml)

Retrieving a document number

The GetNextDocNumbers class includes methods that enable you to retrieve
several types of Microsoft Dynamics GP document numbers. Typically, you use the
GetNextDocNumbers class when you use eConnect to create a new record in
Microsoft Dynamics GP.

How to retrieve
Microsoft Dynamics
GP document
numbers.

The following Visual Basic example shows how to use the GetNextDocNumbers
class to get document numbers for several types of documents.

'Use the connection string to connect to the TWO database

‘ on the local computer

Dim connectionString As String

connectionString = "Data Source=localhost;Integrated Security=SSPI;" _

& "Persist Security Info=False;Initial Catalog=TWO;"

'Instantiate a GetNextDocNumbers object

Dim getDocNumbers As New GetNextDocNumbers()

'Use the GetNextDocNumbers object to retrieve a series of Microsoft Dynamics

‘ GP document numbers

Dim poNumber = getDocNumbers.GetNextPONumber(_

GetNextDocNumbers.IncrementDecrement.Increment, connectionString)

Dim invNumber = getDocNumbers.GetNextIVNumber(_

GetNextDocNumbers.IncrementDecrement.Increment, _

GetNextDocNumbers.IVDocType.IVAdjustment, connectionString)

Dim rmNumber = getDocNumbers.GetNextRMNumber(_

GetNextDocNumbers.IncrementDecrement.Increment, _

GetNextDocNumbers.RMPaymentType.RMReturn, connectionString)

Dim pmNumber = getDocNumbers.GetPMNextVoucherNumber(_

GetNextDocNumbers.IncrementDecrement.Increment, connectionString)

Dim sopNumber = getDocNumbers.GetNextSOPNumber(_

GetNextDocNumbers.IncrementDecrement.Increment, "STDINV", _

GetNextDocNumbers.SopType.SOPInvoice, connectionString)

Returning a document number

After you get a Microsoft Dynamics GP document number, you might find that you
do not need to use that number. Typically, you return an unused document number
so the number can be used later with another document.

To return a document number, you use the DocumentRollback class. The
DocumentRollback class enables you to build a list of document numbers. You use
this list with the RollBackDocumentList method of GetNextDocNumbers class to
return unused document numbers to Microsoft Dynamics GP.

How to restore unused
document numbers.

The following steps show how to retrieve a collection of document numbers and
how to return those numbers to Microsoft Dynamics GP. You will also see how to
view the individual members of a DocumentRollback arraylist.

E C O N N E C T P R O G R A M M E R ’ S G U I D E 55

C H A P T E R 7 E C O N N E C T A N D . N E T

Create the connection string
To retrieve and return document numbers, you need a connection string that
specifies the data server and the company database.

The following Visual Basic example shows how to create a connection string.

'Create a connection string that connects to the TWO database

‘ on the local computer

Dim connectionString As String

connectionString = "Data Source=localhost;Integrated Security=SSPI;" _

& "Persist Security Info=False;Initial Catalog=TWO;"

Get the document number
To retrieve a document number, use the GetNextDocNumbers class.

The following Visual Basic example uses the GetNextDocNumbers class to retrieve
several types of Microsoft Dynamics GP document numbers.

'Instantiate a GetNextDocNumbers object

Dim getDocNumbers As New GetNextDocNumbers()

'Use the GetNextDocNumbers object to retrieve a series of

‘ Microsoft Dynamics GP document numbers

Dim poNumber = getDocNumbers.GetNextPONumber(_

GetNextDocNumbers.IncrementDecrement.Increment, connectionString)

Dim invNumber = getDocNumbers.GetNextIVNumber(_

GetNextDocNumbers.IncrementDecrement.Increment, _

GetNextDocNumbers.IVDocType.IVAdjustment, connectionString)

Dim rmNumber = getDocNumbers.GetNextRMNumber(_

GetNextDocNumbers.IncrementDecrement.Increment, _

GetNextDocNumbers.RMPaymentType.RMReturn, connectionString)

Dim pmNumber = getDocNumbers.GetPMNextVoucherNumber(_

GetNextDocNumbers.IncrementDecrement.Increment, connectionString)

Dim sopNumber = getDocNumbers.GetNextSOPNumber(_

GetNextDocNumbers.IncrementDecrement.Increment, "STDINV", _

GetNextDocNumbers.SopType.SOPInvoice, connectionString)

Specify the document number to return
To specify the document numbers to return, create a DocumentRollback object. Use
the Add method of the DocumentRollback class to build a list of unused document
numbers. To use the Add method, you must specify the document type and the
document number. The Add method creates a RollBackDocument object and adds
that object to an internal arraylist.

The following Visual Basic example shows how to use the Add method of the
DocumentRollback class. Notice how the TransactionType enumeration specifies
the type of each document.

'Instantiate a DcoumentRollback object

Dim docRollBack As New DocumentRollback()

'Add the document numbers to the DocumentRollback object

docRollBack.Add(TransactionType.POP, poNumber)

docRollBack.Add(TransactionType.IVTrans, invNumber)

P A R T 1 E C O N N E C T O V E R V I E W

56 E C O N N E C T P R O G R A M M E R ’ S G U I D E

docRollBack.Add(TransactionType.RM, rmNumber)

docRollBack.Add(TransactionType.PM, pmNumber)

docRollBack.Add(TransactionType.SOP, sopNumber)

Search the document number arraylist (optional)
To find information about each document number in a DocumentRollback object,
search the arraylist of that object. Since each member of the arraylist is a
RollBackDocument object, you can use the document number, document type, and
other properties to find important information about each document number in the
collection.

The following Visual Basic examples shows how to search for document numbers
in a DocumentRollback arraylist. Notice how the ArrayList, the ForEach loop, and
the RollBackDocument type are used to create a list of document numbers.

'**Iterate through the document numbers to return**

'Determine whether the document rollback object contains any document numbers

If docRollBack.CollectionContainsDocuments() = True Then

'Instantiate an arraylist

Dim aList As New ArrayList()

'Load the arraylist with the information about the document numbers

aList = docRollBack.RollBackDocuments()

'Instantiate a list of strings

Dim returns As New List(Of String)

'Iterate the array list and inspect the document numbers

'Use the RollBackDocument type to provide access to the DocumentNumber

' property of each object in the arraylist

For Each number As RollBackDocument In aList

returns.Add(number.DocumentNumber)

Next

End If

Return the document number to Microsoft
Dynamics GP
To return one or more document numbers, use the RollBackDocumentList method
of the GetNextDocNumbers class. The RollBackDocumentList method requires you
to provide an arraylist that contains one or more Microsoft Dynamics GP document
numbers.

To provide the arraylist, use the RollBackDocuments method of your
DocumentRollback object. The method returns an arraylist that includes the
document numbers you previously added to your DocumentRollback object..

E C O N N E C T P R O G R A M M E R ’ S G U I D E 57

C H A P T E R 7 E C O N N E C T A N D . N E T

The following Visual Basic example shows how to use the RollBackDocumentList
method of the GetNextDocNumbers class. Notice how the RollBackDocuments
method of the DocumentRollback object supplies the arraylist parameter for the
RollBackDocumentList method.

'Use the RollBackDocumentList method of the GetNextDocNumbers

‘ object to return the unused document numbers

'Use the RollBackDocuments method of the DocumentRollback object

‘ to specify the document numbers

getDocNumbers.RollBackDocumentList(docRollBack.RollBackDocuments(), _

connectionString)

Retrieving a sales document number

To retrieve a Microsoft Dynamics GP sales document number, use the
GetNextSopNumber method of the GetSopNumber class. To use the
GetNextSopNumber method you specify the type of sale document, the document
ID, and an eConnect connection string. The method returns the next available
document number for the specified type of sales document.

How to retrieve a sales
document number.

The following Visual Basic example shows how to use the GetNextSopNumber
method of the GetSopNumber class. Notice how the GetNextDocNumbers.SopType
enumeration specifies the type of sales document. Also notice the use of STDINV as
the document ID.

'Create a connection string that connects to the TWO database

‘ on the local computer

Dim connectionString As String

connectionString = "Data Source=localhost;Integrated Security=SSPI;" _

& "Persist Security Info=False;Initial Catalog=TWO;"

'Instantiate a GetSopNumber object

Dim getSopNumber As New GetSopNumber

'Get the next available sales invoice document number

Dim salesInvoiceNumber As String

salesInvoiceNumber = getSopNumber.GetNextSopNumber(_

GetNextDocNumbers.SopType.SOPInvoice, _

"STDINV", connectionString)

Returning a sales document number

To return an unused Microsoft Dynamics GP sales document number, you use the
RollBackSopNumber method of the GetSopNumber class. To use the
RollBackSopNumber method you specify the document number, the type of sale
document, the document ID, and an eConnect connection string.

P A R T 1 E C O N N E C T O V E R V I E W

58 E C O N N E C T P R O G R A M M E R ’ S G U I D E

How to restore an
unused sales
document number.

The following Visual Basic example shows how to use the RollBackSopNumber
method of the GetSopNumber class to return an unused sales invoice document
number. Notice how the GetSopNumber class is used to first retrieve the sales
invoice document number. Also notice the use of STDINV as the document ID
when the document is retrieved and when it is returned.

'Create a connection string that connects to the TWO database on the local

‘ computer

Dim connectionString As String

connectionString = "Data Source=localhost;Integrated Security=SSPI;" _

& "Persist Security Info=False;Initial Catalog=TWO;"

'Instantiate a GetSopNumber object

Dim getSopNumber As New GetSopNumber

'Get the next available sales invoice document number

Dim salesInvoiceNumber As String

salesInvoiceNumber = getSopNumber.GetNextSopNumber(_

GetNextDocNumbers.SopType.SOPInvoice, _

"STDINV", connectionString)

'Return the sales invoice number to Microsoft Dynamics GP

Dim returnSucceeded = getSopNumber.RollBackSopNumber(salesInvoiceNumber, _

GetNextDocNumbers.SopType.SOPInvoice, _

"STDINV", connectionString)

eConnect exception handling

The eConnectException classes produces eConnect-specific error information. You
typically use the eConnectExceptions in the following situations.

• You add code to your .NET project that detects eConnect-specific errors. You
then add code that specifies the actions to take when an eConnect error occurs.

• You use the eConnectException class to create and throw a new exception
object. For example, you use the errMessage parameter of the
eConnectException class to add error information that specifies where the error
occurred in your .NET application.

If you use the classes in Microsoft.Dynamics.GP.eConnect, you should include code
to catch and handle eConnect exceptions from the methods of those classes. The
most common exception handling technique is the Try/Catch block. For example,
you place a Try block around a call to the CreateEntity method. You then use a
Catch block to handle the eConnectException type. Typically, you add code to the
Catch block that attempts to correct the error, reports the error to the user, or
records error information to a log.

E C O N N E C T P R O G R A M M E R ’ S G U I D E 59

C H A P T E R 7 E C O N N E C T A N D . N E T

How to handle
eConnect exceptions.

The following Visual Basic example shows how to use a Try/Catch block to handle
an eConnectException. Notice how the first Catch statement handles
eConnectExceptions while the second Catch handles all other exception types. In
this example, the application displays the error information from the message
property of the exception in a textbox control.

Dim ConnectionString As String

Dim eConnectResult As Boolean

Dim eConnectObject As New eConnectMethods

Dim xmlDoc As XmlDocument

'Set the connection string

'This connection string uses integrated security to connect to the

'TWO database on the local computer

ConnectionString = "Data Source=localhost;Integrated Security=SSPI;" _

& "Persist Security Info=False;Initial Catalog=TWO;"

'Load the contents of the textbox into the xmlDoc object

xmlDoc.LoadXml(XmlDoc_TextBox.Text)

Try

'Instantiate an eConnectMethods object

Dim eConnectObject As New eConnectMethods

'If eConnectResult is TRUE, the XML document was successfully submitted

eConnectResult = eConnectObject.CreateEntity(ConnectionString,

xmlDoc.OuterXml)

'If an eConnect error occurs, display the error message

Catch eConnectError as eConnectException

ReturnData_TextBox.Text = eConnectError.Message

'If an unexpected error occurs, display the error message

Catch ex As Exception

ReturnData_TextBox.Text = ex.Message

End Try

60 E C O N N E C T P R O G R A M M E R ’ S G U I D E

E C O N N E C T P R O G R A M M E R ’ S G U I D E 61

Chapter 8: Serialization
This section of the documentation describes how to use classes from the
Microsoft.Dynamics.GP.eConnect.Serialization namespace. You use serialization
classes to create .NET objects that represent eConnect XML documents. The
following items are discussed:

• Microsoft.Dynamics.GP.eConnect.Serialization
• Creating an eConnect document for a .NET project
• Using serialization flags
• Serializing an eConnect document object
• Deserializing a Transaction Requester document

Microsoft.Dynamics.GP.eConnect.Serialization

To create .NET objects that represent Connect XML document, add the
Microsoft.Dynamics.GP.eConnect.Serialization assembly and namespace to your
project.

To use the classes in the Microsoft.Dynamics.GP.eConnect.Serialization namespace, you
must add a reference to the Microsoft.Dynamics.GP.eConnect.Serialization assembly to
your .NET project. For information about how to add a reference, see Adding a reference.

The Microsoft.Dynamics.GP.eConnect.Serialization namespace includes the
following types of classes.

To see the list of serialization classes or to find more information about a specific
class, see the .NET Programming Reference section of the eConnect help. You might
also use the Visual Studio Object Browser to view the fields associated with a
serialization class.

Creating an eConnect document for a .NET project

The serialization classes enable you to use .NET to create an object that represents
an eConnect XML document. The following sections show how to use the
serialization classes to construct a document object. You typically use these objects
with the the Create, Update, or Delete method of the eConnectMethods class.

To create an eConnect document object using serialization classes, complete the
following steps.

Category Description

Node types The node classes represent the data nodes of an eConnect XML
document. The node classes have fields that specify Dynamics GP data
values.

Transaction types The transaction type classes represent the document type and operation
for an eConnect XML document. The transaction type classes have fields
that you populate with node classes.

Document type The eConnectType class represents the root node of an eConnect XML
document. To complete a document, you populate the fields of the
eConnectType class with one or more transaction type classes.

P A R T 3 . N E T D E V E L O P M E N T

62 E C O N N E C T P R O G R A M M E R ’ S G U I D E

Create an eConnect node object
To begin, use the serialization classes to instantiate the objects that represent the
XML nodes for your type of transaction and operation. Populate the fields of the
object with the data values you want to use.

The following Visual Basic example shows how to instantiate a taSopHdrIvcInsert
object. Notice how the fields of the object are populated with data values:

Dim salesHdr As New taSopHdrIvcInsert

With salesHdr

.SOPTYPE = 3

.SOPNUMBE = "INV2001"

.DOCID = "STDINV"

.BACHNUMB = "eConnect"

.TAXSCHID = "USASTCITY-6*"

.FRTSCHID = "USASTCITY-6*"

.MSCSCHID = "USASTCITY-6*"

.LOCNCODE = "WAREHOUSE"

.DOCDATE = DateString 'Today

.CUSTNMBR = "CONTOSOL0001"

.CUSTNAME = "Contoso, Ltd"

.ShipToName = "WAREHOUSE"

.ADDRESS1 = "2345 Main St."

.CNTCPRSN = "Joe Healy"

.FAXNUMBR = "13125550150"

.CITY = "Aurora"

.STATE = "IL"

.ZIPCODE = "65700"

.COUNTRY = "USA"

.SUBTOTAL = 53.8

.DOCAMNT = 53.8

.USINGHEADERLEVELTAXES = 0

.PYMTRMID = "Net 30"

End With

Create an eConnect transaction type object
An eConnect XML document uses transaction type schemas to group related nodes
for a specified operation. To perform this step, you instantiate a transaction type
object. You then populate the fields of the transaction type object with node objects
for that specified transaction type.

The following Visual Basic example shows how to instantiate a
SOPTransactionType object. Notice how the taSopHdrIvcInsert field is populated
with the salesHdr object from the the previous step:

Dim salesOrder As New SOPTransactionType

salesOrder.taSopHdrIvcInsert = salesHdr

Create an eConnect document object
An eConnect XML document uses a document node to package transaction types
for the eConnect business objects. To perform this step in .NET, you instantiate an
eConnectType object. You then populate the fields of the document object with
your transaction type objects.

E C O N N E C T P R O G R A M M E R ’ S G U I D E 63

C H A P T E R 8 S E R I A L I Z A T I O N

The following Visual Basic example instantiates an eConnectType object. Notice
how the SOPTransactionType field is populated with salesOrder object from the
previous step:

Dim eConnect As New eConnectType

eConnect.SOPTransactionType = salesOrder

Serialize the eConnect document
To use or store your .NET eConnect document object, use the .NET XmlDocument
and XmlSerializer classes to convert the .NET document object into an eConnect
XML document. You typically serialize your .NET document for the following
scenarios:

• You use the XmlDocument to supply the XML string parameter for the Create,
Update, or Delete method of the eConnectMethods class. You use these
methods when you use eConnect to create, update, and delete or void
Dynamics GP data records.

• You write the serialized eConnect object to an XML file. You use XML files
when you use Microsoft message queuing (MSMQ) and the eConnect Incoming
Service to create, update, and delete or void Dynamics GP data records. You
can also use the files to archive your transactions to a disk.

For information about how to serialize an eConnect document object, see Serializing
an eConnect document object.

Using serialization flags

Several classes in the eConnect serialization namespace include fields called
serialization flags. A serialization flag is a boolean member of the class that you use
to specify whether to use or discard the value assigned to a related field.

The serialization flag fields in an eConnect serialization class always append the word
“Specified” to the name of the field that the boolean flag targets.

To update a field that has a serialization flag, you assign a value to the field and set
the value of the related serialization flag to True. The serialization flag instructs the
business object to use the value you assigned to the field to update the record in the
database. If you set the serialization flag to False or do not include the serialization
flag, the value you supply in the class field is not used.

You use serialization flags when the underlying eConnect business object supports
update functionality. Update functionality enables you to update a record by
submitting a document that specifies a few fields that have new values. Fields not
explicitly included in the update document retain their existing value. For more
information about eConnect update functionality, see Using eConnect to update
existing data.

The following Visual Basic example illustrates the use of a serialization flag in a
.NET development project. Notice the use of the HOLD and HOLDSpecified fields
of the taUpdateCreateCustomerRcd class. The value of the HOLD field places a
hold on the customer. The value of the HOLDSpecifed field enables the update of
the customer hold status. If HOLDSpecified is omitted or is not set to True, the
value assigned to HOLD is discarded and the hold status of the customer remains
unchanged.

P A R T 3 . N E T D E V E L O P M E N T

64 E C O N N E C T P R O G R A M M E R ’ S G U I D E

public sub UseSerializationFlag()

Try

'**Create a customer document**

'Use the taUpdateCreateCustomerRcd class to specify

' the customer update

Dim customer As New taUpdateCreateCustomerRcd

With customer

'Specify the customer

.CUSTNMBR = "AARONFIT0001"

'Use the HOLD field to place a hold on the customer

'Set the serialization flag HOLDSpecifed to True.

.HOLD = 1

.HOLDSpecified = True

End With

'Add the customer object to the RMCustomerMasterType transaction type

Dim customerTransactionType As New RMCustomerMasterType

customerTransactionType.taUpdateCreateCustomerRcd = customer

'Create an array of RMCustomerMasterType and add

' the customer transaction type object to the array

Dim mySMCustomerMaster(0) As RMCustomerMasterType

mySMCustomerMaster(0) = customerTransactionType

'Add the array of transaction type objects to an

' eConnect document object

Dim eConnectDoc As New eConnectType

eConnectDoc.RMCustomerMasterType = mySMCustomerMaster

'**Serialize the eConnect document**

'Create a memory stream for the serialized eConnect document

Dim memStream As New MemoryStream()

'Create an Xml Serializer and serialize the eConnect document

' to the memory stream

Dim serializer As New XmlSerializer(GetType(eConnectType))

serializer.Serialize(memStream, eConnectDoc)

'Reset the position property to the start of the buffer

memStream.Position = 0

'**Load the serialized Xml into an Xml document**

Dim xmldoc As New XmlDocument()

xmldoc.Load(memStream)

'Instantiate an eConnectMethods object

Dim eConnectObject As New eConnectMethods

'**Set the connection string**

'The connection string targets the TWO database on the local computer

Dim ConnectionString As String

ConnectionString="Data Source=localhost; Integrated Security=SSPI;" _

& "Persist Security Info=False; Initial Catalog=TWO;"

E C O N N E C T P R O G R A M M E R ’ S G U I D E 65

C H A P T E R 8 S E R I A L I Z A T I O N

'**Update the customer record**

'If eConnectResult is TRUE, the XML document was

' successfully submitted

Dim eConnectResult As Boolean

eConnectResult=eConnectObject.UpdateEntity(ConnectionString, _

xmlDoc.OuterXml)

Catch eConnectError As eConnectException

Console.Write(eConnectError.ToString())

Catch ex As System.Exception

Console.Write(ex.ToString())

End Try

End Sub

Serializing an eConnect document object

The serialization classes enable you to programmatically create eConnect document
objects from your .NET application. However, to submit your document to the
eConnect business objects, you must convert the .NET document object to the XML
format that the business objects require. To convert a .NET document object to
XML, use the .NET XmlSerializer and XmlDocument classes to produce a serialized
version of your document.

In .NET, serialization is the process of converting an object into a form that can be
persisted or transported. For eConnect, you typically convert your document object
to a string. For more information about .NET serialization, refer to the .NET
Framework SDK.

The following Visual Basic example shows how to create an eConnect sales invoice
object and serializes the sales invoice to an XML file. The serialized information is
then used with the CreateTransactionEntity method to create the sales invoice in
Dynamic GP. As you review the example, note the following actions:

• The SerializeSalesOrderObject subroutine uses several eConnect serialization
classes to create an eConnect sales order document object. Notice how the two
taSopLineIvcInsert objects and the taSopHdrIvcInsert object populate the
SOPTransactionType object. Also notice how the SOPTransactionType
populates the SOPTransactionType field of the eConnectType document object.

• The SerializeSalesOrderObject subroutine shows how to use a .NET
XmlSerializer, FileStream, and XmlTextWriter to serialize the eConnect
document object to a file. The code example writes an XML representation of
the sales order document object to the SalesOrder.xml file.

• Notice how the Main subroutine loads the XML from the SalesOrder.xml file
into a .NET XmlDocument object.

• The example shows how to use the OuterXml property of the XmlDocument to
populate a string with the XML for the sales order document.

• The example shows how to instantiate an an eConnectMethods object and how
to use the CreateTransactionEntity method. Notice how the sales order
document string is used as a parameter for the CreateTransactionEntity
method. The example then uses the CreateTransactionEntity method to create

P A R T 3 . N E T D E V E L O P M E N T

66 E C O N N E C T P R O G R A M M E R ’ S G U I D E

the sales order document in the Dynamic GP company database specified by
the connection string.

Imports System

Imports System.Xml

Imports System.Xml.Serialization

Imports System.IO

Imports System.Text

Imports Microsoft.Dynamics.GP.eConnect

Imports Microsoft.Dynamics.GP.eConnect.Serialization

Public Class CreateInvoice

 Shared Sub Main()

Dim salesInvoice As New CreateInvoice

Dim salesOrderDocument As String

Dim sConnectionString As String

Dim eConCall As New eConnectMethods

Try

'Call the SerializeSalesOrderObject subroutine and specify

'a file name

salesInvoice.SerializeSalesOrderObject("SalesOrder.xml")

'Create an XML document object and load it with the XML from the

'file that the SerializeSalesOrder subroutine created

Dim xmldoc As New Xml.XmlDocument

xmldoc.Load("SalesOrder.xml")

'Convert the XML to a string

salesOrderDocument = xmldoc.OuterXml

'Create a connection string to the Microsoft Dynamics GP server

'Integrated Security is required (Integrated security=SSPI)

sConnectionString = "data source=localhost;" _

& "initial catalog=TWO;integrated security=SSPI;" _

& "persist security info=False; packet size=4096"

'Create the invoice in Microsoft Dynamics GP

eConCall.CreateTransactionEntity(sConnectionString, _

salesOrderDocument)

Catch exp As eConnectException

Console.Write(exp.ToString)

Catch ex As System.Exception

Console.Write(ex.ToString)

Finally

eConCall.Dispose()

End Try

End Sub

'This subroutine creates an eConnect invoice XML document and

'writes the XML to a file

 Sub SerializeSalesOrderObject(ByVal filename As String)

E C O N N E C T P R O G R A M M E R ’ S G U I D E 67

C H A P T E R 8 S E R I A L I Z A T I O N

Dim salesOrder As New SOPTransactionType

Dim salesLine As New taSopLineIvcInsert_ItemsTaSopLineIvcInsert

Dim salesLine2 As New taSopLineIvcInsert_ItemsTaSopLineIvcInsert

Dim salesHdr As New taSopHdrIvcInsert

Dim LineItems(1) As taSopLineIvcInsert_ItemsTaSopLineIvcInsert

Try

'Populate the elements of the first invoice line

With salesLine

.Address1 = "2345 Main St.”

.CUSTNMBR = "CONTOSOL0001"

.SOPNUMBE = "INV2001"

.CITY = "Aurora"

.SOPTYPE = 3

.DOCID = "STDINV"

.QUANTITY = 2

.ITEMNMBR = "ACCS-CRD-12Wh"

.ITEMDESC = "Phone Cord – 12’ White"

.UNITPRCE = 10.95

.XTNDPRCE = 21.9

.LOCNCODE = "WAREHOUSE"

.DOCDATE = DateString 'Today

End With

'Add the invoice line to the array

LineItems(0) = salesLine

'Populate the elements of the second invoice line

With salesLine2

.Address1 = "2345 Main St."

.CUSTNMBR = "CONTOSOL0001"

.SOPNUMBE = "INV2001"

.CITY = "Aurora"

.SOPTYPE = 3

.DOCID = "STDINV"

.QUANTITY = 2

.ITEMNMBR = "ACCS-CRD-25BK"

.ITEMDESC = "Phone Cord – 25’ Black"

.UNITPRCE = 15.95

.XTNDPRCE = 31.9

.LOCNCODE = "WAREHOUSE"

.DOCDATE = DateString 'Today

End With

'Add the invoice line to the array

LineItems(1) = salesLine2

'Use the array of invoice lines to populate the transaction types

'array of line items

ReDim Preserve salesOrder.taSopLineIvcInsert_Items(1)

salesOrder.taSopLineIvcInsert_Items = LineItems

'Populate the elements of the taSopHdrIvcInsert XML node

With salesHdr

.SOPTYPE = 3

P A R T 3 . N E T D E V E L O P M E N T

68 E C O N N E C T P R O G R A M M E R ’ S G U I D E

.SOPNUMBE = "INV2001"

.DOCID = "STDINV"

.BACHNUMB = "eConnect"

.TAXSCHID = "USASTCITY-6*"

.FRTSCHID = "USASTCITY-6*"

.MSCSCHID = "USASTCITY-6*"

.LOCNCODE = "WAREHOUSE"

.DOCDATE = DateString 'Today

.CUSTNMBR = "CONTOSOL0001"

.CUSTNAME = "Contoso, Ltd."

.ShipToName = "WAREHOUSE"

.ADDRESS1 = "2345 Main St."

.CNTCPRSN = "Joe Healy"

.FAXNUMBR = "13125550150"

.CITY = "Aurora"

.STATE = "IL"

.ZIPCODE = "65700"

.COUNTRY = "USA"

.SUBTOTAL = 53.8

.DOCAMNT = 53.8

.USINGHEADERLEVELTAXES = 0

.PYMTRMID = "Net 30"

End With

'Add the header node to the transaction type object

salesOrder.taSopHdrIvcInsert = salesHdr

'Create an eConnect document object and populate it with

'the transaction type object

Dim eConnect As New eConnectType

ReDim Preserve eConnect.SOPTransactionType(0)

eConnect.SOPTransactionType(0) = salesOrder

'Create a file on the hard disk

Dim fs As New FileStream(filename, FileMode.Create)

Dim writer As New XmlTextWriter(fs, New UTF8Encoding)

'Serialize using the XmlTextWriter to the file

Dim serializer As New XmlSerializer(GetType (eConnectType))

serializer.Serialize(writer, eConnect)

writer.Close()

Catch ex As System.Exception

Console.Write(ex.ToString)

End Try

End Sub

End Class

If you use the example code to create the SalesOrder.xml file. the file should contain
the following XML:

<?xml version="1.0" encoding="utf-8"?>

<eConnect xmlns:xsd=”http://www.w3.org/2001/XMLSchema” xmlns:xsi="http://

www.w3.org/2001/XMLSchema-instance">

<SOPTransactionType>

E C O N N E C T P R O G R A M M E R ’ S G U I D E 69

C H A P T E R 8 S E R I A L I Z A T I O N

<taSopLineIvcInsert_Items>

<taSopLineIvcInsert>

<SOPTYPE>3</SOPTYPE>

<SOPNUMBE>INV2001</SOPNUMBE>

<CUSTNMBR>CONTOSOL0001</CUSTNMBR>

<DOCDATE>05-07-2004</DOCDATE>

<LOCNCODE>WAREHOUSE</LOCNCODE>

<ITEMNMBR>ACCS-CRD-12WH</ITEMNMBR>

<UNITPRCE>10.95</UNITPRCE>

<XTNDPRCE>21.9</XTNDPRCE>

<QUANTITY>2</QUANTITY>

<ITEMDESC>Phone Cord – 12’ White</ITEMDESC>

<DOCID>STDINV</DOCID>

<ADDRESS1>2345 Main St.</ADDRESS1>

<CITY>Aurora</CITY>

</taSopLineIvcInsert>

<taSopLineIvcInsert>

<SOPTYPE>3</SOPTYPE>

<SOPNUMBE>INV2001</SOPNUMBE>

<CUSTNMBR>CONTOSOL0001</CUSTNMBR>

<DOCDATE>05-07-2004</DOCDATE>

<LOCNCODE>WAREHOUSE</LOCNCODE>

<ITEMNMBR>ACCS-CRD-25BK</ITEMNMBR>

<UNITPRCE>15.95</UNITPRCE>

<XTNDPRCE>31.9</XTNDPRCE>

<QUANTITY>2</QUANTITY>

<ITEMDESC>Phone Cord – 25’ Black</ITEMDESC>

<DOCID>STDINV</DOCID>

<ADDRESS1>2345 Main St.</ADDRESS1>

<CITY>Aurora</CITY>

</taSopLineIvcInsert>

</taSopLineIvcInsert_Items>

<taSopHdrIvcInsert>

<SOPTYPE>3</SOPTYPE>

<DOCID>STDINV</DOCID>

<SOPNUMBE>INV2001</ SOPNUMBE>

<TAXSCHID>USASTCITY-6*</TAXSCHID>

<FRTSCHID>USASTCITY-6*</FRTSCHID>

<MSCSCHID>USASTCITY-6*</MSCSCHID>

<LOCNCODE>WAREHOUSE</LOCNCODE>

<DOCDATE>05-07-2004</DOCDATE>

<CUSTNMBR>CONTOSOL0001</CUSTNMBR>

<CUSTNAME>Contoso, Ltd.</CUSTNAME>

<ShipToName>WAREHOUSE</ShipToName>

<ADDRESS1>2345 Main St.</ADDRESS1>

<CNTCPRSN>Joe Healy</CNTCPRSN>

<FAXNUMBR>13125550150</FAXNUMBR>

<CITY>Aurora</CITY>

<STATE>IL</STATE>

<ZIPCODE>65700</ZIPCODE>

<COUNTRY>USA</COUNTRY>

<SUBTOTAL>53.8</SUBTOTAL>

<DOCAMNT>53.8</DOCAMNT>

<BACHNUMB>eConnect</BACHNUMB >

<PYMTRMID>Net 30</PYMTRMID>

</taSopHdrIvcInsert>

P A R T 3 . N E T D E V E L O P M E N T

70 E C O N N E C T P R O G R A M M E R ’ S G U I D E

</SOPTransactionType>

</eConnect>

Deserializing a Transaction Requester document

This section of the documentation shows how to convert the string returned by the
GetEntity method of the eConnectMethods class to an eConnect serialization object
that you can use in your .NET development project. In .NET, the process of
converting a string to an object is called deserialization. To deserialize the eConnect
XML to an object from the eConnect Serialization classes, you use the following
eConnect and .NET components.

• To retrieve eConnect data as an XML string, use the GetEntity method of the
eConnectMethods class. The GetEntity method uses the eConnect Transaction
Requester to retrieve data and create an XML string.

The eConnect Transaction Requester supports a limited number of eConnect document
types. Always check whether the Transaction Requester can retrieve the document type
that you want to use. Also check that the Transaction Requester returns the data fields
you need to create a valid object.

• You use .NET StringReaders and XmlTextReaders to reformat the XML string
you receive from the GetEntity method. Typically, you use the data fields from
the Transaction Requester XML string to populate the data fields of an XML
string that represents a serialized eConnect document type.

• Use the Deserialize method of the .NET XmlSeralizer to create an instance of an
eConnect serialization class. The Deserialize method converts the XML string
into an eConnect serialization object you can use with your .NET project.

To illustrate the deserialization procedure, the following steps show how to retrieve
customer information as an XML string and how to convert that string into a
taUpdateCreateCustomerRcd object.

Use GetEntity to retrieve a record
Use the GetEntity method to retrieve an XML string that includes the data fields for
the specified Transaction Requester document.

To view an example of how to use the GetEntity method to retrieve a customer
record, see Retrieving XML documents with GetEntity.

The following Visual Basic example shows how to use the GetEntity method to
obtain a customer record. Notice how the return result populates the customerDoc
string.

'Retrieve the customer document

Dim customerDoc = eConnectMethods.GetEntity(connectionString,

xmldoc.OuterXml)

Retrieve the data fields for the record
Use a .NET StringReader and XmlTextReader to retrieve the data fields from the
Transaction Requester XML string. Create a new XML string that contains the data
fields.

E C O N N E C T P R O G R A M M E R ’ S G U I D E 71

C H A P T E R 8 S E R I A L I Z A T I O N

The following Visual Basic example retrieves the field values contained in the
customerDoc string. Notice how customerDoc is loaded into the StringReader and
XmlTextReader objects. Also notice how the XmlTextReader uses the name of the
Customer node in customerDoc to identify the parent node of the data fields. The
ReadInnerXml method of the XmlTextReader returns a string that contains all the
data fields that were retrieved by the Transaction Requester.

'**Retrieve the customer XML**

'Load the customer document string into a StringReader

Dim requestReader As New StringReader(customerDoc)

'Use the StringReader to populate an XML text reader

Dim xmlTextReader As New XmlTextReader(requestReader)

'Use the XML text reader to find the customer XML in the eConnect

' Requester response document

'The eConnect_Out_Setup table shows that the customer XML data will

' be enclosed in <Customer> tags

xmlTextReader.ReadToFollowing("Customer")

Dim customerXml = xmlTextReader.ReadInnerXml()

Create a serialized eConnect object
Create a string that represents a serialized version of the object you want to create.
For example, to create a taUpdateCreateCustomerRcd you create a string that
includes the XML for the customer object.

The following Visual Basic example shows how to create a string that represents a
serialized taUpdateCreateCustomerRcd object. Notice how the customerXml string
supplies the XML for the data fields. The customerObjectXml string is then added to
a .NET StringReader object.

'Create a string that places the customer XML into an

taUpdateCreateCustomerRcd XML node

Dim customerObjectXml = String.Concat("<?xml version=""1.0""?> _

<taUpdateCreateCustomerRcd>", customerXml, _

"</taUpdateCreateCustomerRcd>")

'Use a StringReader to read the XML for the taUpdateCreateCustomerRcd XML node

Dim customerReader As New StringReader(customerObjectXml)

Deserialize the eConnect XML string
Use your XML string with the Deserialize method of the .NET XmlSerializer to
create an instance of an eConnect serialization object. The Deserialize method uses
the XML in the string to populate the fields of the object.

The following Visual Basic example shows how to use a .NET XmlSerializer to
deserialize the customerObjectXml in the customerReader object. Notice how
CType is used to specify the type of the object.

'**Deserialize the taUpdateCreateCustomerRcd XML node from the StringReader**

Dim deSerializer As New XmlSerializer(GetType(taUpdateCreateCustomerRcd))

'Cast the deserialized object to a taUpdateCreateCustomerRcd

' serialization object

Dim testObject = CType(deSerializer.Deserialize(customerReader), _

taUpdateCreateCustomerRcd)

P A R T 3 . N E T D E V E L O P M E N T

72 E C O N N E C T P R O G R A M M E R ’ S G U I D E

E C O N N E C T P R O G R A M M E R ’ S G U I D E 73

Chapter 9: eConnect Integration Service
This section of the documentation describes how to use the eConnect Integration
Service in a .NET application. The eConnect integration service is a Windows
Communication Foundation (WCF) service that enables you to perform specified
operations using eConnect XML documents. The following items are discussed:

• eConnect for Microsoft Dynamics GP 2013 Integration Service
• Adding a service reference
• Client constructors
• Using the CreateEntity method to add a record
• eConnect Integration Service exception handling

eConnect for Microsoft Dynamics GP 2013 Integration
Service

The eConnect Integration Service is a Windows service that enables you to use the
eConnect business objects from a .NET application. You can use the eConnect
Integration Service instead of the Microsoft.Dynamics.GP.eConnect assembly.

To use the eConnect Integration Service, you use a WCF service from your
application. A WCF service gives you more flexibility but configuring and using the
service can become complex. Before you attempt to use the eConnect Integration
Service, you should be familiar with WCF .

The eConnect Integration Service includes classes, methods, and enumerations that
you use to perform operations. The classes of the eConnect Integration Service
include many of the same methods that you find in the classes of the
Microsoft.Dynamics.GP.eConnect namespace. For more information, see the .NET
Programming Reference section of the eConnect help.

To add eConnect functionality to an application, you use the following eConnect
Integration Service classes.

Class Description

DocumentNumberRollbac
kClient

Specifies a collection of Microsoft Dynamics GP document numbers
that were not used. This class contains methods found in the
DocumentRollback class of the Microsoft.Dynamics.GP.eConnect
assembly.

eConnectClient Provides access to Microsoft Dynamics GP data. This class contains
methods found in the eConnectMethods and GetNextDocNumbers
classes of the Microsoft.Dynamics.GP.eConnect assembly.

eConnectFault Specifies an eConnect exception that occurred during a service
operation. This class is similar to eConnectException class of the
Microsoft.Dynamics.GP.eConnect assembly.

eConnectSqlFault Specifies one or more SQL exceptions that occurred during a
service operation. You use this class to identify SQL exceptions
during an eConnect operation. This class is similar to
eConnectSqlFault class of the Microsoft.Dynamics.GP.eConnect
assembly.

RollBackDocument Specifies a single Microsoft Dynamics GP document number that
was not used. This class contains the same properties found in the
RollBackDocument class of the Microsoft.Dynamics.GP.eConnect
assembly.

P A R T 3 . N E T D E V E L O P M E N T

74 E C O N N E C T P R O G R A M M E R ’ S G U I D E

The also includes the following enumerations

Adding a service reference

To use the eConnect Integration Service with a .NET application, you have to first
add a service reference to the Visual Studio project for the application.

To add the service reference, your Visual Studio project must specify the target framework as
.NET Framework 3.5.

To add a service reference to a Visual Studio project, complete the following steps.

1. Add a Service Reference.
In Visual Studio, click the the Project menu, and then click Add Service
Reference. The Add Service Reference window opens.

2. Specify the service URL.
In the Address box of the Add Service Reference window, enter the URL of
eConnect Integration Service. Use the following format for the URL:

net.pipe://<server name>/Microsoft/Dynamics/GP/eConnect/

The following example shows a URL for the eConnect Integration service.
Notice how the URL specifies localhost for the server name.

net.pipe://localhost/Microsoft/Dynamics/GP/eConnect/

Click Go.

3. Specify the eConnect service.
In the Services box, click eConnect. In the Namespace box, enter a name for the
service. Click OK. The service reference is created and the service configuration
information is added to the configuration file of the application.

Client constructors

To use the eConnect Integration Service, you first initialize one or more of the
following eConnect client classes:

• DocumentNumberRollbackClient
• eConnectClient

TransactionRecordIdsClien
t

Retrieves the next document number for several types of Microsoft
Dynamics GP documents. This class contains methods found in the
GetNextDocNumbers class of the Microsoft.Dynamics.GP.eConnect
assembly.

Enumeration Description

IncrementDecrement Specifies whether to retrieve or return a document
number.

IVDocType Specifies the type of an inventory document.

RMPaymentType Specifies the type of a receivables document.

SopType Specifies the type of a sales order document.

TransactionType Specifies the type of a transaction.

Class Description

E C O N N E C T P R O G R A M M E R ’ S G U I D E 75

C H A P T E R 9 E C O N N E C T I N T E G R A T I O N S E R V I C E

• TransactionRecordIdsClient

Each class includes one or more constructors you can use to initialize a client object.
Typically, you use the default constructor. The default constructor uses the
endpoint specified in Microsoft.Dynamics.GP.eConnect.Service.exe.config file.
When you install eConnect, the configuration file is added to the folder:

c:\Program Files\Microsoft Dynamics\eConnect 12.0\Service\

The following C# code example use the default constructor to initialize an
eConnectClient object:

// Initialize a new instance of the eConnectClient

eConnectClient eConnectObject = new eConnectClient();

However, you can use other constructor methods to specify the eConnect
Integration Service endpoint you want to use. All of the client classes inherit from
the System.ServiceModel.ClientBase class. The ClientBase class includes
overloaded constructors that you can use to specify endpoint information.

For example, the following table lists all the constructor methods for the
eConnectClient class

The DocumentNumberRollbackClient and TransactionRecordIdsClient include overloaded
constructors with the same parameters as the eConnectClient class.

You use one of these constructors when you want to target a different endpoint then
the default endpoint..

Name Description

eConnectClient() Initializes a new instance of the eConnectClient class using the
default target endpoint.

eConnectClient(string
endpointConfigurationNa
me)

Initializes a new instance of the eConnectClient class using the
specified endpoint configuration. You have to add the endpoint
configuration information to the configuration file of your
application.

eConnectClient(string
endpointConfigurationNa
me, string remoteAddress)

Initializes a new instance of the eConnectClient class using the
specified endpoint configuration. You have to add the endpoint
configuration information to the configuration file of your
application. You also specify the service address you want to use.

eConnectClient(string
endpointConfigurationNa
me,
System.ServiceModel.End
pointAddress
remoteAddress)

Initializes a new instance of the eConnectClient class using the
specified endpoint configuration. You have to add the endpoint
configuration information to the configuration file of your
application. You also specify the service address you want to use.

eConnectClient(System.Se
rviceModel.Channels.Bindi
ng binding,
System.ServiceModel.End
pointAddress
remoteAddress)

Initializes a new instance of the eConnectClient class using the
specified binding and endpoint address.

P A R T 3 . N E T D E V E L O P M E N T

76 E C O N N E C T P R O G R A M M E R ’ S G U I D E

The constructors use the following parameters.

Using the CreateEntity method to add a record

The eConnectClient class of the eConnect Integration Service includes methods that
create, update, delete, and retrieve Microsoft Dynamics GP data. In addition, the
class includes methods you can use to retrieve and restore Microsoft Dynamics GP
document numbers.

To learn how to use the eConnectClients class, use the following steps to create a
customer in Microsoft Dynamics GP. The example shows how to use the
CreateEntity method of the eConnectClient class.

Add a service reference to the project
To begin, use Visual Studio to add a service reference to the eConnect Integration
Service. In the Solution Explorer, right-click References, and then click Add Service
Reference. In the Add Service Reference window, enter the following in Address,
and then click Go.

net.pipe://localhost/Microsoft/Dynamics/GP/eConnect

Click eConnect in the list of Services and type a Namespace value that specifies a
name for the service reference. For example, enter eConnectIntegrationService.

Add the service namespace to the project
Use the service reference name you entered in the previous step to add the
namespace in your Visual Studio project. To add the namespace in C#, you add a
using statement. To add the namespace in Visual Basic you add an Imports
statement.

The following C# example adds a using statement that specifies a namespace from
the service reference. In this example, ServiceTestApp is the name of the application
project and eConnectIntegrationService is the name specified for the service
reference.

using ServiceTestApp.eConnectIntegrationService;

Instantiate an eConnectClient object
To use the integration service, instantiate an eConnectClient object. The object
includes the CreateEntity method you use to add a customer to Microsoft Dynamics
GP.

The following C# example shows how to use the eConnectClient constructor to
create the object:

Name Type Description

binding System.ServiceModel.Cha
nnels.Binding

Specifies the binding to use to make
calls to the service.

endpointConfiguationNam
e

string Specifies the name of the endpoint in
the application configuration file.

remoteAddress string Specifies the address of the eConnect
Integration Service.

remoteAddress System.ServiceModel.End
pointAddress

Specifies the address of the eConnect
Integration Service.

E C O N N E C T P R O G R A M M E R ’ S G U I D E 77

C H A P T E R 9 E C O N N E C T I N T E G R A T I O N S E R V I C E

// Instantiate an eConnectClient object

eConnectClient eConnectObject = new eConnectClient();

Use an XML file to load the customer document
To create a customer you use an eConnect XML document that includes the data for
the customer. One way to get the customer document is to create an XML file that
contains the customer information. For information about how to create an
eConnect XML document for a customer, see Create a customer.

The following C# example shows how to load an eConnect XML document from a
file. Notice how the text from the specified file is loaded into a .NET XmlDocument
object. Also notice how an XML string is created using the OuterXml property of the
XmlDocument object.

// Use the XML document in the specified file to create

// a string representation of the customer

XmlDocument newCustDoc = new XmlDocument();

newCustDoc.Load("CustomerCreate.xml");

string newCustomerDocument = newCustDoc.OuterXml;

Create an eConnect connection string
The CreateEntity method requires an eConnect connection string. You use the
connection string to specify the Dynamics GP data server and the company
database.

For information about eConnect connection strings, see the eConnect Installation
chapter of the eConnect Installation and Administration Guide.

The following C# example shows how to create a connection string:

//Create a connection string

string connectionString = "Data Source=localhost;Integrated

Security=SSPI;Persist Security Info=False;Initial Catalog=TWO;";

Use CreateEntity to submit the customer
document
Use the CreateEntity method to submit the document to the eConnect business
objects. To use the CreateEntity method, you have to supply parameters that specify
the connection string, and the customer.

The CreateEntity method returns a boolean value that indicates whether the XML
document was successfully submitted. A return value of True indicates the
operation succeeded.

The following C# example uses the CreateEntity method to submit an eConnect
XML document. Notice that the first parameter is the connection string. Also notice
that the second parameter is the string that represents the eConnect XML document
for the customer.

// If eConnectResult is TRUE, the XML document was successfully submitted

bool result = eConnectObject.CreateEntity(connectionString,

newCustomerDocument);

P A R T 3 . N E T D E V E L O P M E N T

78 E C O N N E C T P R O G R A M M E R ’ S G U I D E

eConnect Integration Service exception handling

The eConnect Integration Service includes the following exception classes that you
can use to catch and handle eConnect errors:

• eConnectFault
• eConnectSqlFault

You use these classes together with the FaultException generic class from the
System.ServiceModel namespace. You use eConnectFault and eConnectSqlFault to
specify the exception type. The following example shows how to use eConnectFault
with the FaultException class.

FaultException<eConnectFault>

The most common exception handling technique is the Try/Catch block. For
example, you place a Try block around a call to the GetEntity method. You then use
one or more Catch blocks to handle exceptions. You can add code to each Catch
block that attempts to correct the error, reports the error to the user, or records the
error in a log.

The following C# example shows a console application that uses eConnectFault,
and eConnectSqlFault together with FaultException to handle eConnect exceptions.
To follow this example, you use Visual Studio to add a service reference to the
eConnect Integration Service. Notice that the application does not require a
reference to either of the eConnect .NET assemblies.

To create the parameters for GetEntity, the sample includes two methods:

• The ConnectionString method creates an eConnect connection string that
specifies the Microsoft Dynamics GP database you want to query.

• The SpecifyCustomer method returns an XML string. The XML represents an
eConnect requestor document that specifies the customer to retrieve. Notice
how you can use the method to specify the ID of the customer you want to
retrieve.

You could also use the classes in the eConnect Serialization namespace to create the
XML string. For more information, see Retrieving XML documents with GetEntity.

Finally, notice how the Dispose method is called to release the resources used by the
eConnectClient.

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.ServiceModel;

using ExceptionHandling.eConnectIntegrationService;

namespace ExceptionHandling

{

 class Program

 {

 static void Main(string[] args)

 {

E C O N N E C T P R O G R A M M E R ’ S G U I D E 79

C H A P T E R 9 E C O N N E C T I N T E G R A T I O N S E R V I C E

 eConnectClient client = null;

 try

 {

 // Instantiate an eConnectClient object

 client = new eConnectClient();

 // Get a requestor document for a specified customer

 string customer = client.GetEntity(

 ConnectionString("localhost", "TWO"),

 SpecifyCustomer("AARONFIT0001"));

 // Show customer XML document in the console window

 Console.WriteLine(customer);

 Console.WriteLine("\n\nTo continue, press any key");

 Console.ReadKey(false);

 }

 catch (FaultException<eConnectFault> eFault)

 {

 Console.WriteLine(eFault.ToString());

 Console.WriteLine("\n\nTo continue, press any key");

 Console.ReadKey(false);

 }

 catch (FaultException<eConnectSqlFault> sqlFault)

 {

 Console.WriteLine(sqlFault.ToString());

 Console.WriteLine("\n\nTo continue, press any key");

 Console.ReadKey(false);

 }

 catch (Exception err)

 {

 Console.WriteLine(err.Message);

 Console.WriteLine("\n\nTo continue, press any key");

 Console.ReadKey(false);

 }

 finally

 {

 if (client != null)

 {

 client.Dispose();

 }

 }

 }

 // Return a string that represents a transaction requestor XML

 // document for the specified customer

 static string SpecifyCustomer(string custID)

 {

 return String.Format(@"<?xml version=""1.0"" ?>

 <eConnect

 xmlns:xsi=""http://www.w3.org/2001/XMLSchema-instance""

 xmlns:xsd=""http://www.w3.org/2001/XMLSchema"">

 <RQeConnectOutType><eConnectProcessInfo xsi:nil=""true"" />

 <taRequesterTrxDisabler_Items xsi:nil=""true"" />

 <eConnectOut><DOCTYPE>Customer</DOCTYPE>

 <OUTPUTTYPE>1</OUTPUTTYPE><INDEX1TO>{0}</INDEX1TO>

P A R T 3 . N E T D E V E L O P M E N T

80 E C O N N E C T P R O G R A M M E R ’ S G U I D E

 <INDEX1FROM>{1}</INDEX1FROM><FORLIST>1</FORLIST>

 </eConnectOut></RQeConnectOutType></eConnect>",

 custID, custID);

 }

 // Return a string that represents an eConnect connection string

 // to the specified server and database

 static string ConnectionString(string dataSource, string catalog)

 {

 return String.Format(@"data source={0}; initial catalog={1};

 integrated security=SSPI; persist security info=False;

 packet size=4096", dataSource, catalog);

 }

 }

}

P
A

R
T

 4
: M

S
M

Q
 D

E
V

E
LO

P
M

E
N

T

82 E C O N N E C T P R O G R A M M E R ’ S G U I D E

Part 4: MSMQ Development
This portion of the documentation discusses how to use Microsoft Message
Queuing (MSMQ) with eConnect’s Incoming and Outgoing services. The services
allow you to submit and retrieve XML documents. The following information is
discussed:

• Chapter 10, “MSMQ,” explains how MSMQ and the Incoming and Outgoing
Services work together.

• Chapter 11, “Incoming Service,” discusses how to use the Incoming Service to
integrate your application’s data into Microsoft Dynamics GP.

• Chapter 12, “Outgoing Service,” discusses how to use the Outgoing Service to
retrieve XML documents that represent transactions or documents in Microsoft
Dynamics GP.

E C O N N E C T P R O G R A M M E R ’ S G U I D E 83

Chapter 10: MSMQ
eConnect provides an interface built upon the Microsoft Message Queue (MSMQ)
infrastructure. You can use the interface to transport XML documents between your
application and Microsoft Dynamics GP. This portion of the document provides an
introduction to using the MSMQ interface and discusses the following:

• Microsoft Message Queue overview
• Windows Services used with MSMQ
• eConnect MSMQ Control

Microsoft Message Queue overview

Message queuing is a message infrastructure and development platform for
creating distributed, loosely-coupled messaging applications. Message queuing
provides guaranteed message delivery, efficient routing, security, transaction
support, and priority-based messaging. The eConnect MSMQ interface leverages
the abilities of MSMQ to handle messages between applications.

A queue is a logical container that MSMQ uses to store messages. Applications can
send messages to queues where they are stored until a receiving application
retrieves the message from the queue.

Applications typically create queues, locate existing queues, send messages to
queues, and read messages in queues. To perform an operation on a queue, an
application must first reference the queue.

Windows Services used with MSMQ

The eConnect installation includes two Windows Services that are used with the
MSMQ interface.

• The Incoming Service periodically monitors a specified queue. When it finds
messages in the queue, it takes the message, validates the XML document the
message contains, and uses the eConnect business object to perform a Microsoft
Dynamics GP operation.

• The Outgoing Service publishes XML documents to a specified queue. You can
configure the Microsoft Dynamics GP documents and operations that are
published. Messages published to the queue can be retrieved by other
applications. The application can retrieve the XML document from the message
and perform actions based upon the data the document contains.

Refer to the eConnect Installation and Administration Guide for information about
installing and configuring the Incoming Service and the Outgoing Service.

P A R T 1 E C O N N E C T O V E R V I E W

84 E C O N N E C T P R O G R A M M E R ’ S G U I D E

eConnect MSMQ Control

The eConnect installation provides a utility you use to monitor queues and
messages. The eConnect MSMQ Control allows you to open a queue, see the list of
messages in the queue, and view the contents of individual messages.

Use the utility during development to ensure messages are getting delivered and
that they contain the expected XML data. You can also use the control to debug
messages. You can view, edit, and resend messages. For additional information
about using the eConnect MSMQ Control, refer to the Utilities chapter in the
eConnect Installation and Administration Guide.

E C O N N E C T P R O G R A M M E R ’ S G U I D E 85

Chapter 11: Incoming Service
The Incoming Service allows you to create applications that place eConnect XML
documents into an MSMQ message and store the message in a queue. Once a
message is placed in the queue, the Incoming Service is able to retrieve the message
from the queue. The Service creates an XML document from the body of the
message. The Incoming Service takes the data from the XML document and uses it
with the business objects to perform the specified operation.

The Income Service can validate messages to ensure the XML document complies
with the schema, and then call the eConnect Business Objects to perform the
operation contained in the XML document.

To use the Incoming Service refer to the following sections:

• Creating an eConnect XML document
• Creating an MSMQ message
• Incoming Service example

Creating an eConnect XML document

To use the Incoming Service, your application must be able to create eConnect XML
documents. eConnect provides a .NET assembly named eConnect Serialization that
simplifies creating these documents. To use eConnect serialization, you must add a
reference to your project to the Microsoft.Dynamics.GP.eConnect.Serialization
assembly.

Refer to Chapter 8, “Serialization” for additional information about the eConnect
serialization classes.

Creating an MSMQ message

To use MSMQ, add a reference to the System.Messaging assembly of the .NET
framework. To send your XML document to the queue, complete the following
steps:

1. Specify the MSMQ destination.
Create a message queue object and specify the eConnect incoming queue. The
Incoming Service uses the private queue named eConnect_incoming. The
following Visual Basic .NET code creates the object and specifies the
eConnect_incoming queue on the local server:

Dim MyQueue As New MessageQueue(".\private$\econnect_incoming")

2. Populate an MSMQ message.
Create a message object. The following example creates a message object, and
then populates the label and message body properties:

Dim MyMessage As New Message

MyMessage.Label = "eConnect Test with ActiveXMessageFormatter"

MyMessage.Body = sCustomerXmlDoc

Notice how the string representation of the XML document is used to populate
the message body.

P A R T 4 M S M Q D E V E L O P M E N T

86 E C O N N E C T P R O G R A M M E R ’ S G U I D E

3. Specify the message format.
Create a message formatter object to specify how to serialize and deserialize the
message body. The following sample uses an ActiveXMessageFormatter:

Dim MyFormatter As New ActiveXMessageFormatter

MyMessage.Formatter = MyFormatter

MyFormatter.Write(MyMessage, sCustomerXmlDoc)

4. Use a queue transaction.
The eConnect_incoming is a transactional queue. A transactional queue
requires a MesssageQueueTransaction object. The following Visual Basic .NET
code shows how to create and use MesssageQueueTransaction to send a
message to the eConnect_incoming queue:

Dim MyQueTrans As New MessageQueueTransaction

MyQueTrans.Begin()

MyQueue.Send(MyMessage, MyQueTrans)

MyQueTrans.Commit()

5. Close the queue connection.
Once the message is sent, close the queue object. The following sample closes
the queue and frees its resources.

MyQueue.Close()

Refer to the System.Messaging documentation of the .NET Framework for
additional information about message queue classes and enumerations.

Incoming Service example

This example creates a customer XML document and sends it to the queue the
Incoming Service monitors. This example requires references to the
System.Messaging and Microsoft.Dynamics.GP.eConnect.Serialization assemblies.

Notice how the example performs the following steps:

• Creates an eConnect serialization object for a customer and populates its
elements with data.

• Creates an eConnect XML document that describes a new customer to add to
Microsoft Dynamics GP.

• Serializes the eConnect XML document object to create a string representation
of the XML.

• Specifies the MSMQ queue that will receive the message.

• Places the string representation of the XML document in an MSMQ message
object.

• Sends the message to the specified queue.

Private Sub CreateCustomerSendtoMSMQ()

Try

'XML document compnents

Dim eConnect As New eConnectType

E C O N N E C T P R O G R A M M E R ’ S G U I D E 87

C H A P T E R 1 1 I N C O M I N G S E R V I C E

Dim CustomerType As New SMCustomerMasterType

Dim MyCustomer As New taUpdateCreateCustomerRcd

'Serialization objects

Dim serializer As New XmlSerializer(GetType(eConnectType))

Dim MemStream As New MemoryStream

Dim sCustomerXmlDoc As String

'Populate the MyCustomer object with data.

With MyCustomer

.CUSTNMBR = "JOEH0001"

.CUSTNAME = "Joe Healy"

.ADRSCODE = "PRIMARY"

.ADDRESS1 = "789 First Ave N"

.CITY = "Rollag"

.STATE = "MN"

.ZIPCODE = "23589"

End With

'Build the XML document

CustomerType.taUpdateCreateCustomerRcd = MyCustomer

ReDim eConnect.SMCustomerMasterType(0)

eConnect.SMCustomerMasterType(0) = CustomerType

'Serialize the XML document

serializer.Serialize(MemStream, eConnect)

MemStream.Position = 0

'Use the Memory Stream to create an xml string

Dim xmlreader As New XmlTextReader(MemStream)

While xmlreader.Read

sCustomerXmlDoc = sCustomerXmlDoc & xmlreader.ReadOuterXml & vbCr

End While

'Create the MSMQ queue and message objects

Dim MyQueue As New MessageQueue(".\private$\econnect_incoming")

Dim MyMessage As New Message

Dim MyQueTrans As New MessageQueueTransaction

Dim MyFormatter As New ActiveXMessageFormatter

'Build the MSMQ message and send it to the queue

MyMessage.Label = "eConnect Test with ActiveXMessageFormatter"

MyMessage.Body = sCustomerXmlDoc

MyMessage.Formatter = MyFormatter

MyFormatter.Write(MyMessage, sCustomerXmlDoc)

MyQueTrans.Begin()

MyQueue.Send(MyMessage, MyQueTrans)

MyQueTrans.Commit()

MyQueue.Close()

Catch ex As System.Exception

Debug.Write(ex.Message & vbCrLf & ex.StackTrace)

SerializedXmlDoc.Text = ex.Message & vbCrLf & ex.StackTrace

End Try

End Sub

88 E C O N N E C T P R O G R A M M E R ’ S G U I D E

E C O N N E C T P R O G R A M M E R ’ S G U I D E 89

Chapter 12: Outgoing Service
You use the Outgoing Service to publish XML documents that represent specified
documents and operations in Microsoft Dynamics GP. The Outgoing Service
periodically queries the eConnect_Out tables in Microsoft Dynamics GP. It uses
entries in that table to generate XML documents. The documents are placed in an
XML message and sent to the default queue ./private$/econnect_outgoing.

Refer to the eConnect Installation and Administration Guide for information about
configuring the Outgoing Service.

The following topics are discussed:

• Publishing the eConnect XML documents
• Retrieving the MSMQ message
• Outgoing Service Example

Publishing the eConnect XML documents

To begin using the Outgoing Service, you specify the Microsoft Dynamics GP
documents and operations to publish. eConnect supplies a utility named the
Requester Enabler/Disabler to manage this. The utility creates SQL triggers in the
Microsoft Dynamics GP database that update the eConnect_Out table.

For information about configuring the Requester Enable/Disabler utility, refer to
the Utilities chapter of the eConnect Installation and Administration Guide.

The Outgoing Service queries the eConnect_Out tables to identify the documents to
publish. The Outgoing Service creates eConnect XML documents that represent the
Microsoft Dynamics GP documents to publish. The service encloses the eConnect
XML document in an MSMQ message, and routes the message to the specified
queue.

Retrieving the MSMQ message

To use the Outgoing Service, your application needs to retrieve the messages from
the queue. The default queue the Outgoing Services uses is
.\private$\econnect_outgoing. To develop applications that retrieve messages, add
a reference to the System.Messaging assembly of the .NET framework. The basic
procedure to retrieve a message from the queue is as follows:

1. Create a message queue object.
Instantiate a MessageQueue object. Use the path to the local outgoing queue
.\private$\econnect_outgoing. Populate the queue object’s Formatter property
to allow the message to be deserialized. The following Visual Basic .NET
example demonstrates these steps:

Dim myQueue As New MessageQueue(".\private$\econnect_outgoing")

myQueue.Formatter = New ActiveXMessageFormatter

P A R T 4 M S M Q D E V E L O P M E N T

90 E C O N N E C T P R O G R A M M E R ’ S G U I D E

2. Create a transaction object.
The econnect_outgoing queue is a transactional queue. You must include a
queue transaction object with your request. The following example creates the
transaction object:

Dim myTransaction As New MessageQueueTransaction

3. Create a message object.
Instantiate an object that will receive the message retrieved from the specified
queue:

Dim myMessage As New Message

4. Retrieve a message.
Use the object you created to retrieve a message from the queue. This example
retrieves the first available message from the queue:

myTransaction.Begin()

myMessage = myQueue.Receive(myTransaction)

myTransaction.Commit()

5. Get the XML data from the message.
The body of the message will contain a string. The string represents the XML
document that describes the Microsoft Dynamics GP operation that triggered
the message. The following example retrieves the string from an MSMQ
message:

Dim myDocument As [String] = CType(myMessage.Body, [String])

Outgoing Service Example

This example retrieves an MSMQ message from the Outgoing Service queue. This
example requires references to the System.Messaging and System.XML assemblies.

Notice how the example performs the following steps:

• Creates a MessageQueue object to access the Outgoing Service’s message
queue.

• Creates the MSMQ Formatter, MessageQueueTransaction, and Message objects.

• Retrieves the message from the queue.

• Retrieves the string from the Message object

• Loads the string into an XML document object and uses it to display the XML in
a textbox. To allow access to specific XML elements and values, the example
parses the string into XML. Refer to the .NET Framework documentation for
information about creating XML from a string.

Private Sub GetMessage()

'Create queue object to retrieve messages from the default outgoing queue

Dim MyQueue As New MessageQueue(".\private$\econnect_outgoing")

'Create an MSMQ formatter and transaction objects

MyQueue.Formatter = New ActiveXMessageFormatter

E C O N N E C T P R O G R A M M E R ’ S G U I D E 91

C H A P T E R 1 2 O U T G O I N G S E R V I C E

Dim MyTransaction As New MessageQueueTransaction

'Create a message object

Dim MyMessage As Message

Try

'Retrieve a message from the queue

'This example assumes there is always a message waiting in the queue

MyTransaction.Begin()

MyMessage = MyQueue.Receive(MyTransaction)

MyTransaction.Commit()

'Retrieve the string from the message

Dim MyDocument As [String] = CType(MyMessage.Body, [String])

'Load the string into an XML document object

Dim MyXml As New XmlDocument

MyXml.LoadXml(MyDocument)

'Display the XML from the queue message

MessageText.Text = MyXml.InnerXml

Catch err As SystemException

ErrorText.Text = err.InnerException.ToString()

End Try

End Sub

92 E C O N N E C T P R O G R A M M E R ’ S G U I D E

P
A

R
T

 5
: B

U
S

IN
E

S
S

 LO
G

IC

94 E C O N N E C T P R O G R A M M E R ’ S G U I D E

Part 5: Business Logic
This portion of the documentation explains how to work with the eConnect
business objects. The discussion includes information about using and extending
the business rules contained in the business objects. The following information is
discussed:

• Chapter 13, “Business Logic Overview,” provides an overview of eConnect’s
business logic and how it can be used or extended by your application.

• Chapter 14, “Custom XML Nodes,” discusses how you add custom XML nodes
to an eConnect XML document.

• Chapter 15, “Business Logic Extensions,” discusses how to use the pre and post
stored procedures to modify eConnect’s business logic.

E C O N N E C T P R O G R A M M E R ’ S G U I D E 95

Chapter 13: Business Logic Overview
This portion of the documentation describes options to use and extend eConnect’s
business logic. The following topics are discussed:

• Business logic
• Extending business logic
• Calling the business objects

Business logic

Business logic is the collection of rules that constrain and guide the handling of
business data. eConnect encapsulates its business logic in business objects. The
business objects recreate Microsoft Dynamics GP’s business logic for the documents
and operations that eConnect supports.

The eConnect business objects implement business logic using SQL stored
procedures. Any eConnect action that queries, creates, updates, or deletes data from
Microsoft Dynamics GP uses one or more stored procedures. The eConnect install
encrypts these stored procedures so you cannot edit the SQL instructions they
contain.

While you cannot directly modify eConnect’s core stored procedures, eConnect’s
business logic can be modified to respond to unique business problems. To adjust
its business logic to a unique business problem, eConnect allows you to customize
it’s XML documents and add custom SQL code that supplements the eConnect
stored procedures.

Extending business logic

When you develop an application that uses eConnect, you may encounter business
situations that do not conform to eConnect’s existing business logic. To resolve
these situations, eConnect allows you to refine its existing business logic. Use the
following to supplement eConnect’s business logic:

Add XML nodes to an existing schema eConnect allows you to add
custom XML nodes to its document schema. When you add an XML node to a
document schema, you must also add a custom SQL stored procedure that
processes your XML node’s data. For more information about adding XML nodes,
see Chapter 14, “Custom XML Nodes.”

Extend the business logic Each eConnect SQL stored procedure provides a
named pre and post procedure. To modify eConnect’s business logic, add SQL code
to the pre and post procedures that meet your unique business requirement. For
more information about extending eConnect’s business logic, see Chapter 15,
“Business Logic Extensions.”

Calling the business objects

You may add eConnect business logic to an application by directly calling an
eConnect SQL stored procedure.

eConnect encapsulates its business logic in a collection of SQL stored procedures.
When you use Microsoft Dynamics GP Utilities to create a new company, GP
Utilities automatically install the eConnect SQL stored procedures on your

P A R T 1 E C O N N E C T O V E R V I E W

96 E C O N N E C T P R O G R A M M E R ’ S G U I D E

Microsoft Dynamics GP SQL server. Since the stored procedures are available on
the SQL server, you can use them to add eConnect business logic to your
application.

You should avoid direct calls to the stored procedures. To add eConnect business logic to an
application, use the eConnect application programming interface (API) that supports your
application’s development environment.

Refer to the SQL Server help documentation for information about calling a SQL
stored procedure from an application.

If you encounter a situation that requires a direct call to an eConnect stored
procedure, your application must address the following:

• Create a connection to the database server.
• Implement security restrictions to prevent unauthorized use of your database

connection.
• Implement transaction management to commit or rollback changes.
• Identify and handle error conditions.
• Update your application whenever changes are made to the parameters for the

stored procedure.

If you call an eConnect SQL stored procedure, you must always assess whether the
procedure succeeded. The eConnect stored procedures use the ErrorState element
to indicate whether the procedure encountered an error. If the value of ErrorState is
0, the procedure was successful. If the ErrorState value is anything other than 0, an
error occurred and the transaction must be rolled back.

You must check the value of the ErrorState element after each call to an eConnect stored
procedure. All eConnect stored procedures reset the ErrorState element to zero when they
start.

E C O N N E C T P R O G R A M M E R ’ S G U I D E 97

Chapter 14: Custom XML Nodes
This portion of the documentation discusses how you add custom XML nodes to
eConnect XML documents. You use custom XML nodes to allow eConnect to
process new types of data. The following topics are discussed:

• Adding an XML node
• Creating a SQL stored procedure

Adding an XML node

eConnect allows you to add XML nodes to the XML document schema. Custom
XML nodes enable you to use new data elements in an eConnect XML document.
You also use custom XML nodes to trigger the business logic in a custom SQL
stored procedure.

To begin, specify a name for your XML node. The name must be unique and must
match the name of a SQL stored procedure. In addition, the name of the XML node
cannot end with the word Items.

In the eConnect transaction type schema documents, XML nodes that end with Items
indicate the node contains one or more child nodes. If you attempt to use a single XML node
with a name that ends with Items, your transaction will fail.

When eConnect processes an XML document, it uses the name of each XML node to
find the SQL stored procedure that contains the business logic for that XML node.
For example, a document that includes a custom XML node named
<eConnectCustomProcedure> requires the target database to include a SQL stored
procedure named eConnectCustomProcedure.

After you have a name for your XML node, you must specify the data elements for
your XML node. The data elements contain the values for the XML document. To
add data elements to an XML node, use the following guidelines:

• Define the data elements of your custom XML node. Typically, the number of
data elements match the input parameters of the SQL stored procedure.

• Specify a unique name for each data element. Typically, the data element names
match the names used for the input parameter of the SQL stored procedure.

• Determine the data type of each element. Use the data type and data length
constraints from the input parameters of the SQL stored procedures to specify
the type of data for each element.

The SQL stored procedure uses the data elements of the XML node to complete the
business logic associated with that XML node.

To show a custom XML node, the following XML example defines a node named
<eConnectCustomProcedure>. Notice how the XML node includes a single data
element named <CUSTNMBR> that holds a customer ID value:

<eConnectCustomProcedure>

<CUSTNMBR>CONTOSOL0002</CUSTNMBR>

</eConnectCustomProcedure>

P A R T 5 B U S I N E S S L O G I C

98 E C O N N E C T P R O G R A M M E R ’ S G U I D E

After you define your custom XML node, add your new XML node to an existing
eConnect transaction type schema. To use your XML node, you need to include that
node in an eConnect XML document.

The following XML example adds the <eConnectCustomProcedure> XML node to
an eConnect XML document. Notice how the <eConnectCustomProcedure> node
has been added to the <RMCustomerMasterType> transaction type.

<eConnect xmlns:dt="urn:schemas-microsoft-com:datatypes">

<RMCustomerMasterType>

<eConnectProcessInfo>

</eConnectProcessInfo>

<eConnectCustomProcedure>

<CUSTNMBR>CONTOSOL0002</CUSTNMBR>

</eConnectCustomProcedure>

<taUpdateCreateCustomerRcd>

<CUSTNMBR>CONTOSOL0002</CUSTNMBR>

<CUSTNAME>Contoso, Ltd.</CUSTNAME>

<TAXSCHID>USALLEXMPT-0</TAXSCHID>

<SHIPMTHD>PICKUP</SHIPMTHD>

<ADDRESS1>321 Main S </ADDRESS1>

<CITY>Valley City</CITY>

<STATE>ND</STATE>

<ZIPCODE>56789</ZIPCODE>

<COUNTRY>USA</COUNTRY>

<PHNUMBR1>13215550100</PHNUMBR1>

<PHNUMBR2>13215550110</PHNUMBR2>

<FAX>13215550120</FAX>

<SALSTERR>TERRITORY 6 </SALSTERR>

<SLPRSNID>SEAN C .</SLPRSNID>

<SLPRSNFN>Sean</SLPRSNFN>

<SPRSNSLN>Chai</SPRSNSLN>

<UPSZONE>red</UPSZONE>

<CNTCPRSN>Joe Healy</CNTCPRSN>

<CHEKBKID>PAYROLL</CHEKBKID>

<PYMTRMID>Net 30 </PYMTRMID>

<COMMENT1>comment1</COMMENT1>

<COMMENT2>comment2</COMMENT2>

<USERDEF1>Retail</USERDEF1>

<PRBTADCD>PRIMARY</PRBTADCD>

<PRSTADCD>PRIMARY</PRSTADCD>

<ADRSCODE>PRIMARY</ADRSCODE>

<STADDRCD>PRIMARY</STADDRCD>

<CRCARDID>Gold Credit </CRCARDID>

<STMTNAME>Contoso, Ltd.</STMTNAME>

<SHRTNAME>Contoso, Ltd.</SHRTNAME>

<Revalue_Customer>1</Revalue_Customer>

<Post_Results_To>0</Post_Results_To>

<CRLMTAMT>90000.00</CRLMTAMT>

</taUpdateCreateCustomerRcd>

</RMCustomerMasterType>

</eConnect>

E C O N N E C T P R O G R A M M E R ’ S G U I D E 99

C H A P T E R 1 4 C U S T O M X M L N O D E S

Creating a SQL stored procedure

When you add a custom XML node, you also have to create a SQL stored procedure
for that node. You use the stored procedure to create, update, or delete a database
record using the values in the data elements of the node. To associate the stored
procedure with the node, the stored procedure and the custom node must have the
same name.

For example, the previous section adds an <eConnectCustomProcedure> node to
an XML document. To process the new node, you have to create a stored procedure
named eConnectCustomProcedure. To process the data elements in the node, the
stored procedure must include the following parameters:

• You add an input parameter for each element of your custom node. For
example, the <eConnectCustomProcedure> node requires you to add a
CUSTNMBR parameter to the eConnectCustomProcedure stored procedure.

• You add the input parameters in the same order that the element appears in the
custom XML node.

• To use the eConnect error handling process, you add output parameters that
can hold an ErrorState value and an ErrString message. ErrorState specifies
whether an error occurred and ErrString includes error codes and other
information.

To add a stored procedure to your database server, refer to the SQL Server help
documentation for information about installing SQL stored procedures.

The following SQL example shows a stored procedure for the
<eConnectCustomProcedure> XML node. Notice that the
eConnectCustomProcedure name matches the name of the node. Also notice how
the input parameter named I_vCUSTNMBR maps to the CUSTNMBR element of
the node. Finally, notice that the procedure includes output parameters named
O_iErrorState and oErrString that enable the procedure to return error information.

/* Begin_Procs eConnectCustomProcedure */

if exists (select * from dbo.sysobjects where id =

Object_id('dbo.eConnectCustomProcedure') and type = 'P')

begin

drop proc dbo.eConnectCustomProcedure

end

go

create procedure dbo.eConnectCustomProcedure

@I_vCUSTNMBR char(15), /* Customer Number - only required field */

@O_iErrorState int output, /* Return value: 0 = No Errors, Any Errors > 0 */

@oErrString varchar(255) output /* Return Error Code List */

as

declare

@CUSTBLNC int,

@O_oErrorState int,

@iError int,

@iStatus smallint,@iAddCodeErrState int

P A R T 5 B U S I N E S S L O G I C

100 E C O N N E C T P R O G R A M M E R ’ S G U I D E

/*********************** Initialize locals ******************************/

select

@O_iErrorState = 0,

@oErrString = '',

@iStatus = 0,

@iAddCodeErrState = 0

/***************** Custom Procedure edit check validation ***************/

/*If the @I_vCUSTNMBR variable is '' then we need to add the error code */

/*35010 to the @oErrString output variable.*/

/*The method that eConnect uses to append all error string is the */

/*taUpdateString procedure.*/

/*Error codes can be appended to the @oErrString variable: for example you */

/*could append a 33 44 55 66 to the @oErrString variable */

/*After the error codes have been appended to the @oErrString variable. */

/***/

if (@I_vCUSTNMBR = '')

begin

select @O_iErrorState = 35010 /* Customer number is empty */

exec @iStatus = taUpdateString

@O_iErrorState,

@oErrString,

@oErrString output,

@iAddCodeErrState output

end

/* Do some custom business logic */

select @CUSTBLNC = CUSTBLNC

from RM00103 (nolock)

where CUSTNMBR = @I_vCUSTNMBR

/* End custom business logic */

return (@O_iErrorState)

go

grant execute on dbo.eConnectCustomProcedure to DYNGRP

go

E C O N N E C T P R O G R A M M E R ’ S G U I D E 101

Chapter 15: Business Logic Extensions
This portion of the documentation discusses how to customize the eConnect
business logic to address unique business requirements. The following topics are
discussed:

• Modifying business logic
• Using pre and post stored procedures

Modifying business logic

When you use Microsoft Dynamics GP Utilities to create a company, the creation
process places all the eConnect stored procedures for that company’s database on
your Microsoft Dynamics GP SQL server. These stored procedures contain
eConnect’s business logic. You cannot modify any of the eConnect core stored
procedures.

When eConnect processes an XML document, it executes a SQL stored procedure
for each XML node in that document. When the stored procedure executes, it also
executes the pre and post stored procedures for that businss object. The following
example describes the sequence of actions initiated by a call to the
taSopHdrIvcInsert stored procedure..

• The pre stored procedure runs prior to the core stored procedure. In this
example, the taSopHdrIvcInsertPre executes. After the pre stored procedure
completes, the business object checks for errors. If it detects an error, the stored
procedure stops, initiates a rollback, and returns an error message to the caller.
If no error is detected, the stored procedure continues.

• The taSopHdrIvcInsert stored procedure runs. When the stored procedure
completes, it checks for errors. If it detects an error, the stored procedure stops,
initiates a rollback, and returns an error message to the caller. If no error is
detected, the stored procedure continues with a call to the post stored
procedure.

• The post stored procedure runs immediately after the core stored procedure. In
this example, the taSopHdrIvcInsertPost stored procedure executes. After the
post stored procedure completes, the business object checks for errors. If it
detects an error, the stored procedure stops, initiates a rollback, and returns an
error message to the caller. If no error is detected, the stored procedure ends
and returns to the caller.

For additional information about the sequence of events in an eConnect stored
procedure, refer to the Business objects on page 14.

To alert the eConnect business object of an error in your pre or post stored
procedure, use the output parameters for that stored procedure. To report the status
of your pre or post procedure, use the output parameters as follows:

• If the pre or post stored procedure completes successfully, set the value of the
ErrorState output parameter to zero.

• If the pre or post stored procedures encounter an error, set the ErrorState
parameter of the stored procedure to a non-zero value. If the eConnect business

P A R T 5 B U S I N E S S L O G I C

102 E C O N N E C T P R O G R A M M E R ’ S G U I D E

object finds a non-zero value in the ErrorState parameter, the stored procedure
halts and initiates a rollback of the transaction.

• When an error occurs in the pre or post stored procedures, set a value in the
ErrString output parameter that describes the error.

Using pre and post stored procedures

To modify eConnect’s business logic, place custom SQL code in the pre or post
procedures. The custom code in the pre and post procedures allow you to modify or
extend the behavior of the core eConnect stored procedure. To customize a pre or
post stored procedure, complete the following steps:

1. Open the .sql file for the stored procedure.
eConnect supplies a file for each pre and post stored procedure you can modify.
To find a specific file, open the folder C:\Program Files\Microsoft
Dynamics\eConnect 12.0\Custom Procedures. This folder contains a subfolder
for each transaction type schema. Open the subfolder that contains the stored
procedure you want to modify.

As an example, assume you want to modify the
taUpdateCreateCustomerRcdPost stored procedure. Open the C:\Program
Files\Microsoft Dynamics\eConnect 12.0\Custom Procedures\Receivables
folder. Next, open the taUpdateCreateCustomerRcdPost.sql file. You may edit
the file using any text editor or Microsoft SQL Server Management Studio.

2. Add your custom SQL code.
With the .sql file open, you can add custom SQL code to the file. The only parts
of the document you should change are the Revision History and the section of
the file specified for custom business logic. Your SQL code should be added
between the following comments:

/* Create Custom Business Logic */

/* End Create Custom Business Logic */

To avoid errors or unexpected results, do not modify any of the other
statements in the file. After adding your custom business logic, save the file.

3. Run the .sql file in Microsoft SQL Server Management Studio.
Open the modified file with Microsoft SQL Server Management Studio. Use the
drop-down list from the toolbar to specify the Microsoft Dynamics GP database
that contains the target stored procedure. Click the Execute button. The Query
Messages window displays whether the stored procedure was successfully
updated. If it succeeded, the stored procedure now includes your custom SQL
code.

The following SQL example shows a customized taCreateTerritoryPre stored
procedure. The example overrides the value in the Territory Description
(SLTERDSC) parameter to reflect that the sales territory was created using
eConnect:

/* Begin_Procs taCreateTerritoryPre */

if exists (select * from sysobjects where id =

object_id('dbo.taCreateTerritoryPre')and type = 'P')

E C O N N E C T P R O G R A M M E R ’ S G U I D E 103

C H A P T E R 1 5 B U S I N E S S L O G I C E X T E N S I O N S

begin

drop procedure dbo.taCreateTerritoryPre

end

go

create procedure dbo.taCreateTerritoryPre

/*

**

* (c) 2004 Microsoft Business Solutions, Inc.

**

*

* PROCEDURE NAME:taCreateTerritoryPre

*

* SANSCRIPT NAME:NA

*

* PARAMETERS:

*

* DESCRIPTION:taCreateSalespersonPost Integration Stored Procedure

*

* TABLES:

* Table NameAccess

* ================

*

* PROCEDURES CALLED:

*

* DATABASE:Company

*

* RETURN VALUE:

* 0 = Successful

* non-0= Not successful

*

* REVISION HISTORY:

*

* Date Who Comments

* --

*

*

**

*

**

*/

@I_vSALSTERR char(15) output,/*Territory ID <Required>*/

@I_vSLTERDSC char(30) output,/*Territory Description <Optional>*/

@I_vSLPRSNID char(15) output,/*Salesperson ID <Optional>*/

@I_vSTMGRFNM char(15) output,/*Sales Terr Managers First Name <Optional>*/

@I_vSTMGRMNM char(15) output, /*Sales Terr Managers Middle Name <Optional>*/

@I_vSTMGRLNM char(20) output,/*Sales Terr Managers Last Name <Optional>*/

@I_vCOUNTRY char(60) output, /*Country <Optional>*/

@I_vCOSTTODT numeric(19,5) output,/*Cost to Date <Optional>*/

@I_vTTLCOMTD numeric(19,5) output,/*Total Commissions to Date <Optional>*/

@I_vTTLCOMLY numeric(19,5) output,/*Total Commissions Last Year <Optional>*/

@I_vNCOMSLYR numeric(19,5) output,/*Non-Comm Sales Last Year <Optional>*/

@I_vCOMSLLYR numeric(19,5) output,/*Comm Sales Last Year <Optional>*/

@I_vCSTLSTYR numeric(19,5) output,/*Cost Last Year <Optional>*/

@I_vCOMSLTDT numeric(19,5) output,/*Commissioned Sales To Date <Optional>*/

@I_vNCOMSLTD numeric(19,5) output,/*Non-Comm Sales To Date <Optional>*/

P A R T 5 B U S I N E S S L O G I C

104 E C O N N E C T P R O G R A M M E R ’ S G U I D E

@I_vKPCALHST tinyint output,/*Keep Calendar History - 0=No 1=Yes <Optional>*/

@I_vKPERHIST tinyint output,/*Keep Period History - 0=No 1=Yes <Optional>*/

@I_vMODIFDTdatetime output,/*Modified Date <Optional>*/

@I_vCREATDDTdatetime output, /*Create Date <Optional>*/

@I_vUSRDEFND1 char(50) output,/*User Defined field-developer use only*/

@I_vUSRDEFND2 char(50) output,/*User Defined field-developer use only*/

@I_vUSRDEFND3 char(50) output,/*User Defined field-developer use only*/

@I_vUSRDEFND4 varchar(8000) output,/*User Defined field-developer use only*/

@I_vUSRDEFND5 varchar(8000) output,/*User Defined field-developer use only */

@O_iErrorStateint output,/* Return value: 0=No Errors, 1=Error Occurred*/

@oErrString varchar(255) output/* Return Error Code List*/

as

set nocount on

select @O_iErrorState = 0

/* Create Custom Business Logic */

set @I_vSLTERDSC = 'Created by eConnect'

/* End Create Custom Business Logic */

return (@O_iErrorState)

go

grant execute on dbo.taCreateTerritoryPre to DYNGRP

go

/* End_Procs taCreateTerritoryPre */

P
A

R
T

 6
: T

R
A

N
S

A
C

T
IO

N
 R

E
Q

U
E

S
T

E
R

106 E C O N N E C T P R O G R A M M E R ’ S G U I D E

Part 6: Transaction Requester
This portion of the documentation contains information about the eConnect
Transaction Requester Service. You use Transaction Requester to retrieve data from
Microsoft Dynamics GP. The following topics are discussed:

• Chapter 16, “Using the Transaction Requester,” discusses how to use the
Transaction Requester Service. The Transaction Requester publishes eConnect
XML documents to an MSMQ queue.

• Chapter 17, “Customizing the Transaction Requester,” discusses creating a
custom Transaction Requester Service that retrieves data in ways that a base
Transaction Requester Service cannot.

E C O N N E C T P R O G R A M M E R ’ S G U I D E 107

Chapter 16: Using the Transaction Requester
The Transaction Requester is an eConnect service that publishes eConnect XML
documents to an MSMQ queue. You use the Transaction Requester to retrieve
information about specific Microsoft Dynamics GP documents and operations. The
discussion addresses the following topics:

• Transaction Requester Overview
• Requester document types
• Requester document tables
• Using the RequesterTrx element
• Using the <taRequesterTrxDisabler> XML node

Transaction Requester Overview

The eConnect Transaction Requester enables you to retrieve XML that represents a
document and operation. You typically use the Transaction Requester to publish
XML documents to an MSMQ. There are two components to the Transaction
Requester:

eConnect Requester Setup This utility allows you to specify the XML
documents that are published to an MSMQ queue. Use eConnect Requester Setup to
identify Microsoft Dynamics GP documents, operations, and the MSMQ queue that
receives the document. Refer to the eConnect Installation and Administration
Guide to learn about using the eConnect Requester Setup utility.

Outgoing Service The Transaction Requester employs the Outgoing Service to
publish the specified XML documents to the queue. To use the Transaction
Requester Service, you must configure and enable the Outgoing Service. Refer to
the eConnect Installation Guide to learn about the Outgoing Service’s configuration
options.

Once the XML documents are published to the queue, your application can retrieve
them from the queue. You can then parse the XML document and perform actions
based upon the information they contain. For more information about how to
retrieve documents from a queue, see Chapter 12, “Outgoing Service.”

The Transaction Requester also enable you to retrieve XML documents from a .NET
application. To retrieve XML that represents a document, add code to your .NET
application that uses the GetEntity method of the eConnectMethods class. For
information about how to use the GetEntity method, see Chapter 7, “eConnect and
.NET.”

Requester document types

The Transaction Requester enables you to request an XML document related to a
create, update, or delete operation for the following document types:

• Cash_Receipt
• Customer
• Customer_Balance
• Employee
• GL_Accounts
• GL_Hist_Trans
• GL_Open_Trans

P A R T 6 T R A N S A C T I O N R E Q U E S T E R

108 E C O N N E C T P R O G R A M M E R ’ S G U I D E

• GL_Work_Trans
• Item
• Item_ListPrice
• ItemPriceLevels
• Payables_History_Transaction
• Payables_Posted_Transaction
• Payables_Transaction
• PO_History_Transaction
• PO_Receiving_Hist_Trans
• PO_Receiving_Transaction
• Project_Acct_Contract
• Project_Acct_Contract_Template
• Project_Acct_Cost_Category
• Project_Acct_Employee_Rate
• Project_Acct_EmployeeExpense
• Project_Acct_Equipment_Rate
• Project_Acct_MiscLog
• Project_Acct_Position_Rate
• Project_Acct_Project
• Project_Acct_Project_Access
• Project_Acct_Project_Template
• Project_Acct_Timesheet
• Purchase_Order_Transaction
• Receivables_Hist_Trans
• Receivables_Posted_Transaction
• Receivables_Transaction
• RM_SalesPerson
• Sales_History_Transaction
• Sales_Transaction
• UOFM
• Vendor
• VendorItem

Requester document tables

The following table shows the Microsoft Dynamics GP tables the Transaction
Requester uses to retrieve data for the specified document type:

Document type Alias Tables used

Cash_Receipt Cash_Receipt RM10201

Customer Customer
Address
Internet_Address

RM00101
RM00102
SY01200

Customer_Balances Customer
Balance

RM00101
RM00103

Employee Employee
Address

UPR00100
UPR00102

GL_Accounts GL_Accounts
Details

GL00105
GL00100

GL_Hist_Trans GL_Hist_Trans GL30000

GL_Open_Trans GL_Open_Trans GL20000

GL_Work_Trans GL_Work_Trans GL10000

Item Item
Quantities

IV00101
IV00102

E C O N N E C T P R O G R A M M E R ’ S G U I D E 109

C H A P T E R 1 6 U S I N G T H E T R A N S A C T I O N R E Q U E S T E R

Item_ListPrice Item
ListPrice

IV00101
IV00105

ItemPriceLevels ItemPriceLevels IV00108

Payables_History_Transaction PM_Hist_Trans
Tax

PM30200
PM30700

Payables_Posted_Transaction PM_Posted_Trans
Tax

PM2000
PM10500

Payables_Transaction PM_Trans
Tax

PM1000
PM10500

PO_History_Transaction PO_Hist_Trans
Line
Comment

POP30100
POP30110
POP10150

PO_Receiving_Hist_Trans PO_Receiving_Hist
Line
Quantities

POP30300
POP30310
POP10500

PO_Receiving_Transaction PO_Receiving
Line
Quantities

POP10300
POP10310
POP10500

Project_Acct_Contract PA_Contract
Cont_Bill_Cycle
PA_Project

PA01101
PA02401
PA01201

Project_Acct_Contract_Template PA_Contract_Temp
Cont_Bill_Cycle_Temp

PA41501
PA42901

Project_Acct_Cost_Category Cost_Category PA01001

Project_Acct_Employee_Rate PA_Employ_Rate
Line

PA01402
PA01403

Project_Acct_EmployeeExpense PA_EmpExp
Line
Tax

PA10500
PA10501
PA10502

Project_Acct_Equipment_Rate PA_Equip_Rate
Line

PA01406
PA01407

Project_Acct_MiscLog PA_MiscLog
Line

PA10200
PA10201

Project_Acct_Position_Rate PA_Employ_Rate
Line

PA01404
PA01405

Project_Acct_Project PA_Project
Bill_Cycle
Budget
Budget_IVItems
Fee
Fee_Schedule
Access_List
Equip_List

PA01201
PA61020
PA01301
PA01303
PA02101
PA05200
PA01408
PA01409

Project_Acct_Project_Access Proj_Acct_List
Employee_Detail
Address

PA01408
UPR00100
UPR00102

Project_Acct_Project_Template PA_Project_Temp
Proj_Bill_Cycle_Temp
Budget
Budget_Items
Fee
Fee_Schedule
Equip_List
Access_List

PA41601
PA60020
PA40201
PA40202
PA60040
PA40203
PA41409
PA41401

Document type Alias Tables used

P A R T 6 T R A N S A C T I O N R E Q U E S T E R

110 E C O N N E C T P R O G R A M M E R ’ S G U I D E

Using the RequesterTrx element

Many eConnect XML nodes include an element named RequesterTrx. The
RequesterTrx element enables you to specify whether the Transaction Requester
should publish a transaction that creates, updates, or deletes Microsoft Dynamics
GP record as an XML document.

To specify that an incoming eConnect XML document should not publish the
transaction to the eConnect_Out table, set the RequesterTrx element of each XML
node in the document to 0. A RequesterTrx element with a value of 0 instructs the
Transaction Requester to not publish the current transaction in the eConnect_Out
table.

Project_Acct_Timesheet PA_Time
Line

PA10000
PA10001

Purchase_Order_Transaction Header
Line
Comment

POP10100
POP10110
POP10150

Receivables_Hist_Trans Header
Invoice_Tax

RM30101
RM30601

Receivables_Posted_Transaction Header
Invoice_Tax

RM20101
RM10601

Receivables_Transaction Header
Invoice_Tax

RM10301
RM10601

RM_SalesPerson RM_SalesPerson RM00301

Sales_History_Transaction SO_Hist_Trans
Line
Line_Tax
Commissions
Distribution
Payments
Holds
UserDefined
Deposit
Notes

SOP30200
SOP30300
SOP10105
SOP10101
SOP10102
SOP10103
SOP10104
SOP10106
SOP30201
SY03900

Sales_Transaction SO_Trans
Commissions
Line
LineTax
Distribution
Payments
Holds
UserDefined
Deposit
Notes

SOP10100
SOP10101
SOP10200
SOP10105
SOP10102
SOP10103
SOP10104
SOP10106
SOP30201
SY03900

UOFM UOFM IV40201

Vendor Vendor
Vendor_Addr

PM00200
PM00300

VendorItem VendorItem IV00103

Document type Alias Tables used

E C O N N E C T P R O G R A M M E R ’ S G U I D E 111

C H A P T E R 1 6 U S I N G T H E T R A N S A C T I O N R E Q U E S T E R

For example, you use the eConnect Requester Setup utility to publish all customer
inserts, updates, or deletes to the eConnect_Out table. To prevent a specific
eConnect customer XML document from being published, you set the RequesterTrx
element of the <taUpdateCreateCustomerRcd> XML node to 0.

For most XML nodes, the default value of the RequesterTrx element is 0. The default
prevents the Transaction Requester from recognizing creates, updates, and deletes
that originate from eConnect.

To ensure an eConnect XML document you use to create, update, or delete a record
in Microsoft Dynamics GP is handled by the Transaction Requester, set the
RequesterTrx element of that XML node to 1.

Using the <taRequesterTrxDisabler> XML node

The <taRequesterTrxDisabler> XML node gives you the ability to disable core and
third-party Transaction Requester document types for individual transactions. All
the eConnect transaction type schemas allow you to add one or more
<taRequesterTrxDisabler> XML nodes.

You use <taRequesterTrxDisabler> with the classes in Microsoft.Dynamics.GP.eConnect
.NET assembly. You typically use <taRequesterTrxDisabler> when submitting documents
through the Create, Update or Delete method of the eConnectMethods class.

You typically use the <taRequesterTrxDisabler> node with core or third-party
document types that do not support the use of the RequesterTrx element. If the
document you are using has XML nodes that have RequesterTrx elements, use the
RequesterTrx elements to specify whether the Transaction Requester publishes
your transaction.

To disable the Transaction Requester for a single transaction, add a
<taRequesterTrxDisabler> XML node to the transaction type schema. To disable
multiple Transaction Requester document types, add separate
<taRequesterTrxDisabler> nodes to the transaction type schema. To specify the
Transaction Requester document type, add a document type name to the DOCTYPE
element.

Use the Index elements to identify a specific document. For example, the
Transaction Requester requires the Customer document type to include a
CUSTNUMBR value. To disable the Transaction Requester for a document that
updates a specific customer, you populate the INDEX1 field with the Customer ID.

The following XML example uses two <taRequesterTrxDisabler> nodes to disable
the “Customer” and “Sales_Transaction” Transaction Requester document types.
Notice how the INDEX values are used to specify the individual transactions.

<?xml version="1.0" encoding="utf-8" ?>

<eConnect xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://

www.w3.org/2001/XMLSchema-instance">

<SOPTransactionType>

<taRequesterTrxDisabler_Items>

<taRequesterTrxDisabler>

<DOCTYPE>Customer</DOCTYPE>

<INDEX1>CONTOSOL0001</INDEX1>

</taRequesterTrxDisabler>

<taRequesterTrxDisabler>

P A R T 6 T R A N S A C T I O N R E Q U E S T E R

112 E C O N N E C T P R O G R A M M E R ’ S G U I D E

<DOCTYPE>Sales_Transaction</DOCTYPE>

<INDEX1>INV2001</INDEX1>

<INDEX2>3</INDEX2>

</taRequesterTrxDisabler>

</taRequesterTrxDisabler_Items>

<taSopLineIvcInsert_Items>

<taSopLineIvcInsert>

<SOPTYPE>3</SOPTYPE>

<SOPNUMBE>INV2001</SOPNUMBE>

<CUSTNMBR>CONTOSOL0001</CUSTNMBR>

<DOCDATE>02/02/2006</DOCDATE>

<LOCNCODE>WAREHOUSE</LOCNCODE>

<ITEMNMBR>ACCS-CRD-12WH</ITEMNMBR>

<UNITPRCE>10.95</UNITPRCE>

<XTNDPRCE>21.9</XTNDPRCE>

<QUANTITY>2</QUANTITY>

<ITEMDESC>Phone Cord - 12' White</ITEMDESC>

<DOCID>STDINV</DOCID>

<ADDRESS1>2345 Main St</ADDRESS1>

<CITY>Aurora</CITY>

</taSopLineIvcInsert>

<taSopLineIvcInsert>

<SOPTYPE>3</SOPTYPE>

<SOPNUMBE>INV2001</SOPNUMBE>

<CUSTNMBR>CONTOSOL0001</CUSTNMBR>

<DOCDATE>02/02/2006</DOCDATE>

<LOCNCODE>WAREHOUSE</LOCNCODE>

<ITEMNMBR>ACCS-CRD-25BK</ITEMNMBR>

<UNITPRCE>15.95</UNITPRCE>

<XTNDPRCE>31.9</XTNDPRCE>

<QUANTITY>2</QUANTITY>

<ITEMDESC>Phone Cord - 25' Black</ITEMDESC>

<DOCID>STDINV</DOCID>

<ADDRESS1>2345 Main St</ADDRESS1>

<CITY>Aurora</CITY>

</taSopLineIvcInsert>

</taSopLineIvcInsert_Items>

<taSopHdrIvcInsert>

<SOPTYPE>3</SOPTYPE>

<DOCID>STDINV</DOCID>

<SOPNUMBE>INV2001</SOPNUMBE>

<TAXSCHID>USASTCITY-6*</TAXSCHID>

<FRTSCHID>USASTCITY-6*</FRTSCHID>

<MSCSCHID>USASTCITY-6*</MSCSCHID>

<LOCNCODE>WAREHOUSE</LOCNCODE>

<DOCDATE>02/02/2006</DOCDATE>

<CUSTNMBR>CONTOSOL0001</CUSTNMBR>

<CUSTNAME>Contoso Ltd</CUSTNAME>

<ShipToName>WAREHOUSE</ShipToName>

<ADDRESS1>2345 Main St</ADDRESS1>

<CNTCPRSN>Joe Healy</CNTCPRSN>

<FAXNUMBR>13215550150</FAXNUMBR>

<CITY>Aurora</CITY>

<STATE>IL</STATE>

<ZIPCODE>60507</ZIPCODE>

<COUNTRY>USA</COUNTRY>

E C O N N E C T P R O G R A M M E R ’ S G U I D E 113

C H A P T E R 1 6 U S I N G T H E T R A N S A C T I O N R E Q U E S T E R

<SUBTOTAL>53.8</SUBTOTAL>

<DOCAMNT>53.8</DOCAMNT>

<BACHNUMB>eConnect</BACHNUMB>

<PYMTRMID>Net 30</PYMTRMID>

</taSopHdrIvcInsert>

</SOPTransactionType>

</eConnect>

114 E C O N N E C T P R O G R A M M E R ’ S G U I D E

E C O N N E C T P R O G R A M M E R ’ S G U I D E 115

Chapter 17: Customizing the Transaction
Requester
eConnect allows you to create custom Transaction Requester Services that retrieve
data from Microsoft Dynamics GP. This portion of the document describes how to
create a custom Transaction Requester Service. The discussion includes the
following topics:

• Creating a Transaction Requester document type
• Implementing the RequesterTrx element

Creating a Transaction Requester document type

The Transaction Requester allows you to create custom Transaction Requester
document types. You can use the Transaction Requester to define new document
types that support your specific business needs. For example, you can create a
document type to retrieve data from tables that the original Transaction Requester
document types do not include.

To create a custom Transaction Requester Service, you first identify the tables and
other information that the Transaction Requester requires. You need to identify a
document type name, the tables to use, the index columns, the key fields used to
join tables, and the data fields you want to include in your document.

You must recreate all custom requester services after an installation has completed. The
install drops and recreates the eConnect_Out_Setup table. Any custom information in the
eConnect_Out_Setup table is lost.

To define your document type, you need to add the information you gathered to the
eConnect_Out_Setup table. The Transaction Requester uses the information in this
table to retrieve and publish eConnect XML documents.

The following table describes the columns of the eConnect_Out_Setup table.

Column name Data type Description

DOCTYPE varchar Identifies the service.

INSERT_ENABLED int Determines whether the service is
enabled or disabled for an insert
action. Enabled=1, Disabled=0

UPDATE_ENABLED int Determines whether the service is
enabled or disabled for an update
action. Enabled=1, Disabled=0

DELETE_ENABLED int Determines whether the service is
enabled or disabled for a delete
action. Enabled=1, Disabled=0

TABLENAME varchar Physical name of table in SQL
Server.

ALIAS varchar Alias name for DOCTYPE, which is
used in the output XML document.
(Try to keep alias names as short as
possible.)

P A R T 6 T R A N S A C T I O N R E Q U E S T E R

116 E C O N N E C T P R O G R A M M E R ’ S G U I D E

MAIN int Determines whether this record is
associated with the primary table
or a child table. MAIN=1 defines a
primary table; MAIN=2 or greater
defines a secondary table.
Increment by one for every level.

PARENTLEVEL int Determines the parent for this
record. When you specify a table as
a secondary table (the value of
MAIN is greater than 1) you need to
specify its parent level. Set the
parent level to 1 if it directly links to
the main table. If your secondary
table links to a child table of the
main table, use the value in the
child table’s MAIN column as your
table’s PARENTLEVEL value.

ORDERBY int Defines whether this level needs to
be included in the order by clause.
ORDERBY=1 defines this level to be
included;
ORDERBY=0 defines this level to be
ignored.

USERDEF1-5 varchar Used for any user-defined purpose.

REQUIRED1 varchar Defines the name of the column to
verify whether data exists for it
during an insert transaction. If the
column specified is empty, this
transaction is ignored. If the
column has data in it and the
service is enabled, the transaction
is echoed to the shadow table
(eConnect_Out). If no column is
specified, all transactions are
written out to the shadow table.

INDEX1-15 varchar Specifies the column name of the
primary index that should be used
for this table. You can specify 1 to
15 columns.

INDEXCNT int Defines the number of columns
that are specified for the index
columns.

TRIGGER1-15 varchar Specifies column names used for
creating triggers. The columns
specified should link back to the
columns that you specified in the
INDEX1-15 columns of the main
table. These columns are used to
determine what data needs to be
written out to the shadow table
(eConnect_Out).

JOINTABLE varchar Specifies the table name that needs
to be used for joining.

JOIN1-10 varchar Specifies column names from the
table specified in the TABLENAME
column that are used to join to the
table specified in the JOINTABLE
column.

Column name Data type Description

E C O N N E C T P R O G R A M M E R ’ S G U I D E 117

C H A P T E R 1 7 C U S T O M I Z I N G T H E T R A N S A C T I O N R E Q U E S T E R

The Transaction Requester cannot support SQL Server data columns that are defined as
either text or binary.

To add a document type to the Transaction Requester, use a SQL query to insert a
new record to the eConnect_Out_Setup table of your Microsoft Dynamics GP
company database. Use the query to populate the columns that uniquely define
your document type. To ensure the Transaction Requester can use your document
type, your SQL query must include the following required information:

• The number of tables you use to retrieve data defines the number of inserts you
use to add your document type to the eConnect_Out_Setup table.

• When you create a custom document type, you must define a single table as the
main table. You specify the main table by setting the value of MAIN to 1.

• Additional tables for the document type have a value of MAIN greater than
one. In addition, these tables supply a value for the JOINTABLE column.

• Take care to match the columns specified by the JOIN1-10 and JOINTO1-10
fields. Use these columns to define the relationships between the joined tables.
For example, the column specified by JOIN1 must contain values that match
values in the column specified by JOINTO1.

The following SQL example uses two insert statements to define a Transaction
Requester document type for employees. The new Transaction Requester document
type combines data from the Microsoft Dynamics GP UPR00100 and UPR00102
tables.

/* Employee Document Setup */

/* this insert will create the record for the parent table – UPR00100 */

insert into eConnect_Out_Setup (

DOCTYPE,

MAIN,

PARENTLEVEL,

ORDERBY,

INDEX1,

INDEXCNT,

TRIGGER1,

TRIGGERCNT,

TABLENAME,

ALIAS,

DATACNT,DATA1,

DATA2,

JOINTO1-10 varchar Specifies column names from the
table specified in the JOINTABLE
column that are used in
conjunction with the columns listed
in the JOIN1-10 columns.

DATACNT int Defines the number of columns
that are specified for the data
columns.

DATA1-180 varchar Specifies names of the data
columns that you want to appear in
the XML document. You can specify
1 to 180 columns.

Column name Data type Description

P A R T 6 T R A N S A C T I O N R E Q U E S T E R

118 E C O N N E C T P R O G R A M M E R ’ S G U I D E

DATA3,

DATA4,

DATA5,

DATA6,

DATA7,

DATA8,

DATA9,

DATA10,

DATA11,

DATA12,

DATA13,

DATA14,

DATA15,

DATA16,

DATA17

)

select

'Employee',

1,

0,

1,

'EMPLOYID',

1,

'EMPLOYID',

1,

'UPR00100',

'Employee',

17,

'EMPLCLAS',

'INACTIVE',

'LASTNAME',

'FRSTNAME',

'MIDLNAME',

'ADRSCODE',

'SOCSCNUM',

'BRTHDATE',

'GENDER',

'ETHNORGN',

'Calc_Min_Wage_Bal',

'DIVISIONCODE_I',

'DEPRTMNT',

'JOBTITLE',

'SUPERVISORCODE_I',

'LOCATNID',

'WCACFPAY'

GO

/* Employee Address Document Setup */

/* this insert will create the record for the child table */

/* (UPR00102) and link it to the parent table (UPR00100) */

insert into eConnect_Out_Setup (

DOCTYPE,

MAIN,

PARENTLEVEL,

ORDERBY,

INDEX1,

INDEX2,

E C O N N E C T P R O G R A M M E R ’ S G U I D E 119

C H A P T E R 1 7 C U S T O M I Z I N G T H E T R A N S A C T I O N R E Q U E S T E R

INDEXCNT,

TRIGGER1,

TRIGGERCNT,

TABLENAME,

ALIAS,

JOINTABLE,

JOIN1,

JOINTO1,

DATACNT,

DATA1,

DATA2,

DATA3,

DATA4,

DATA5,

DATA6,

DATA7,

DATA8,

DATA9,

DATA10,

DATA11,

DATA12,

DATA13,

DATA14,

DATA15,

DATA16

)

select

'Employee',

2,

1,

1,

'EMPLOYID',

'ADRSCODE',

2,

'EMPLOYID',

1,

'UPR00102',

'Address',

'UPR00100',

'EMPLOYID',

'EMPLOYID',

16,

'ADDRESS1',

'ADDRESS2',

'ADDRESS3',

'CITY',

'STATE',

'ZIPCODE',

'COUNTY',

'COUNTRY',

'PHONE1',

'PHONE2',

'PHONE3',

'FAX',

'Foreign_Address',

'Foreign_StateProvince',

P A R T 6 T R A N S A C T I O N R E Q U E S T E R

120 E C O N N E C T P R O G R A M M E R ’ S G U I D E

'Foreign_Postal_Code',

'CCode'

GO

After you add your document type to the eConnect_Out_Setup table, the
Transaction Requester works the same as the existing Transaction Requester
document types. For example, the Outgoing Service publishes the data fields in an
XML document to MSMQ.

The following XML examples show the XML documents that the Transaction
Requester produces for the employee document type. The first example shows the
master document you get when you set OutputType to 1.

<root>

<eConnect_Out ACTION="0" EMPLOYID="BARR0001">

<Employee>

<EMPLOYID>HEALY0001</EMPLOYID>

<EMPLCLAS>INST</EMPLCLAS>

<INACTIVE>0</INACTIVE>

<LASTNAME>Healy</LASTNAME>

<FRSTNAME>Joe</FRSTNAME>

<MIDLNAME></MIDLNAME>

<ADRSCODE>PRIMARY</ADRSCODE>

<SOCSCNUM>944229198</SOCSCNUM>

<BRTHDATE>1961-10-07T00:00:00</BRTHDATE>

<GENDER>1</GENDER>

<ETHNORGN>1</ETHNORGN>

<Calc_Min_Wage_Bal>0</Calc_Min_Wage_Bal>

<DIVISIONCODE_I></DIVISIONCODE_I>

<DEPRTMNT>CONS</DEPRTMNT>

<JOBTITLE>CONS1</JOBTITLE>

<SUPERVISORCODE_I></SUPERVISORCODE_I>

<LOCATNID></LOCATNID>

<WCACFPAY>0</WCACFPAY>

</Employee>

</eConnect_Out>

</root>

The following example shows the complete document you get when you set the
OutputType to 2.

<root>

<eConnect_Out ACTION="0" EMPLOYID="BARR0001">

<Employee>

<EMPLOYID>HEALY0001</EMPLOYID>

<EMPLCLAS>INST</EMPLCLAS>

<INACTIVE>0</INACTIVE>

<LASTNAME>Healy</LASTNAME>

<FRSTNAME>Joe</FRSTNAME>

<MIDLNAME></MIDLNAME>

<ADRSCODE>PRIMARY</ADRSCODE>

<SOCSCNUM>944229198</SOCSCNUM>

<BRTHDATE>1961-10-07T00:00:00</BRTHDATE>

<GENDER>1</GENDER>

<ETHNORGN>1</ETHNORGN>

<Calc_Min_Wage_Bal>0</Calc_Min_Wage_Bal>

E C O N N E C T P R O G R A M M E R ’ S G U I D E 121

C H A P T E R 1 7 C U S T O M I Z I N G T H E T R A N S A C T I O N R E Q U E S T E R

<DIVISIONCODE_I></DIVISIONCODE_I>

<DEPRTMNT>CONS</DEPRTMNT>

<JOBTITLE>CONS1</JOBTITLE>

<SUPERVISORCODE_I></SUPERVISORCODE_I>

<LOCATNID></LOCATNID>

<WCACFPAY>0</WCACFPAY>

<Address>

<EMPLOYID>HEALY0001</EMPLOYID>

<ADRSCODE>PRIMARY</ADRSCODE>

<ADDRESS1>4567 Main Ave</ADDRESS1>

<ADDRESS2></ADDRESS2>

<ADDRESS3></ADDRESS3>

<CITY>Wauwatosa</CITY>

<STATE>WI</STATE>

<ZIPCODE>43210-9876 </ZIPCODE>

<COUNTY></COUNTY>

<COUNTRY>USA</COUNTRY>

<PHONE1>4145550150</PHONE1>

<PHONE2></PHONE2>

<PHONE3></PHONE3>

<FAX></FAX>

<Foreign_Address>0</Foreign_Address>

<Foreign_StateProvince></Foreign_StateProvince>

<Foreign_Postal_Code></Foreign_Postal_Code>

<CCode></CCode>

</Address>

</Employee>

</eConnect_Out>

</root>

Implementing the RequesterTrx element

To control whether the Transaction Requester publishes your document type for a
create, update or delete, use the RequesterTrx element of the XML node. The
RequesterTrx element enables you to specify whether the Transaction Requester
should publish the current transaction as an XML document.

To use the RequesterTrx in a document type, you need to use an eConnect stored
procedure named eConnectOutVerify. This stored procedure prevents the
Transaction Requester from publishing a document where the RequesterTrx flag is
set to 0.

To use the eConnectOutVerify stored procedure, call the eConnectOutVerify from
the eConnect pre and post stored procedure of the business object associated with
your XML node. To use the eConnectOutVerify stored procedure, your pre and
post procedures must supply the following values:

• Use the DOCTYPE parameter to specify the Transaction Requester document
type. Use the same DOCTYPE value you used to add the document type to the
eConnect_Out_Setup table. In the following example, the Transaction
Requester document type is Employee.

• Use the INDEX parameters (INDEX1 - 15) to identify the specific document you
want to exclude from the Transaction Requester. You must supply a value for
each index you defined in the eConnect_Out_Setup table for your document

P A R T 6 T R A N S A C T I O N R E Q U E S T E R

122 E C O N N E C T P R O G R A M M E R ’ S G U I D E

type. In the following example, the value of @I_vEMPLOYID is assigned to
INDEX1 to specify the ID of the employee.

The following SQL examples shows how to use eConnectOutVerify from the pre
and post procedures for the Employee example. Notice how the pre procedure uses
eConnectOutVerify to identify document type and the employee. Also, notice how
the post procedure sets the eConnectOutVerify Delete parameter to 1. The Delete
parameter restores the original configuration of the Transaction Requester.

Pre procedure example
/*** Call eConnectOutVerify proc ***/

if (@I_vRequesterTrx =0)

begin

exec @iStatus = eConnectOutVerify

@I_vDOCTYPE ='Employee',

@I_vINDEX1=@I_vEMPLOYID ,

@I_vINDEX2='',

@I_vINDEX3='',

@I_vINDEX4='',

@I_vINDEX5='',

@I_vINDEX6='',

@I_vINDEX7='',

@I_vINDEX8='',

@I_vINDEX9='',

@I_vINDEX10='',

@I_vINDEX11='',

@I_vINDEX12='',

@I_vINDEX13='',

@I_vINDEX14='',

@I_vINDEX15='',

@I_vDelete = 0,

@O_iErrorState = @ iCustomState output

select @iError = @@error

if @iStatus = 0 and @ iError <> 0

begin

select @iStatus = @ iError

end

if (@iStatus <> 0) or (@ iCustomState <> 0)

begin

select @O_iErrorState = 9999 /* eConnectOutVerify proc returned an

error value */

exec @iStatus = taUpdateString

@O_iErrorState ,

@oErrString ,

@oErrString output,

@O_oErrorState output

end

end

Post procedure example
/*** Call eConnectOutVerify proc ***/

if (@I_vRequesterTrx =0)

begin

exec @iStatus = eConnectOutVerify

@I_vDOCTYPE ='Employee',

@I_vINDEX1=@I_vEMPLOYID ,

E C O N N E C T P R O G R A M M E R ’ S G U I D E 123

C H A P T E R 1 7 C U S T O M I Z I N G T H E T R A N S A C T I O N R E Q U E S T E R

@I_vINDEX2='',

@I_vINDEX3='',

@I_vINDEX4='',

@I_vINDEX5='',

@I_vINDEX6='',

@I_vINDEX7='',

@I_vINDEX8='',

@I_vINDEX9='',

@I_vINDEX10='',

@I_vINDEX11='',

@I_vINDEX12='',

@I_vINDEX13='',

@I_vINDEX14='',

@I_vINDEX15='',

@I_vDelete = 1,

@O_iErrorState = @ iCustomState output

select @iError = @@error

if @iStatus = 0 and @ iError <> 0

begin

select @iStatus = @ iError

end

if (@iStatus <> 0) or (@ iCustomState <> 0)

begin

select @O_iErrorState = 9999 /* eConnectOutVerify proc returned an

error value */

exec @iStatus = taUpdateString

@O_iErrorState ,

@oErrString ,

@oErrString output,

@O_oErrorState output

end

end

124 E C O N N E C T P R O G R A M M E R ’ S G U I D E

P
A

R
T

 7
: E

C
O

N
N

E
C

T
 S

A
M

P
LE

S

126 E C O N N E C T P R O G R A M M E R ’ S G U I D E

Part 7: eConnect Samples
This portion of the documentation describes the sample applications you get when
you install the Help and Samples feature. The samples are a collection of Visual
Studio projects you can use to build applications that work with eConnect. The
eConnect install places the folders and files for each project in the following
location:

c:\Program Files\Microsoft Dynamics\eConnect 12.0\eConnect Samples

The following samples are discussed:

• Chapter 18, “Create a Customer,” describes a sample that creates a Microsoft
Dynamics GP customer.

• Chapter 19, “Create a Sales Order,” describes a sample that creates a Microsoft
Dynamics GP sales order document.

• Chapter 20, “XML Document Manager,” describes a sample that uses eConnect
XML documents stored in XML files to complete operations in a Microsoft
Dynamics GP database.

• Chapter 21, “Get a Document Number,” describes two samples that
demonstrate how to retrieve document numbers from Microsoft Dynamics GP.

• Chapter 22, “Retrieve Data,” describes a sample that retrieves customer data
from Microsoft Dynamics GP.

• Chapter 23, “MSMQ Document Sender,” describes a sample application that
converts an eConnect XML document to MSMQ message and places the
message in a queue.

E C O N N E C T P R O G R A M M E R ’ S G U I D E 127

Chapter 18: Create a Customer
This sample application demonstrate how to use the eConnect .NET assemblies to
create a new Microsoft Dynamics GP customer. This console application provides a
basic example of creating Microsoft Dynamics GP data with eConnect. The
following topics are discussed:

• Overview
• Running the sample application
• How the sample application works
• How eConnect was used

Overview

The sample application shows how to use eConnect serialization classes, write an
eConnect XML document to a file, and create a new Microsoft Dynamics GP
customer. Before you run this application, set the eConnect connection string in the
source file to access the appropriate Microsoft Dynamics GP database.

This sample application is available in both C# and Visual Basic .NET. To build this
application, you must have Visual Studio and the .NET Framework installed on
your computer. To find project files for the C# application, open the following
folder:

c:\Program Files\Microsoft Dynamics\eConnect 12.0\eConnect Samples\CSHARP

Console Application

To find the project files for the Visual Basic .NET application, open the following
folder:

c:\Program Files\Microsoft Dynamics\eConnect 12.0\eConnect Samples\VB DOT NET

Console Application

Running the sample application

To run this sample application, perform the following steps:

1. Start Visual Studio and open the solution file for the sample
application.
The solution file for the C# version of the sample is named
eConnect_CSharp_ConsoleApplication.sln. The solution file is in the
CSHARPConsoleApplication folder inside the Samples folder.

The solution file for the Visual Basic .NET versions is named
eConnect_VB_ConsoleApplication.sln. The solution file is in the
VBDOTNETConsoleApplication folder inside the Samples folder.

2. Open the source file.
Open the Visual Studio Solution Explorer. Open the Class1.cs file in the C#
project or Module1.vb file in the Visual Basic .NET project.

3. Update the connection string.
Locate the variable named sConnectionString and set the Data Source value to
the name of your Microsoft Dynamics GP SQL Server. Set the Initial Catalog

P A R T 7 E C O N N E C T S A M P L E S

128 E C O N N E C T P R O G R A M M E R ’ S G U I D E

value to the name of the Microsoft Dynamics GP company database where you
would like the new customer to be created.

4. Choose Start Debugging from the Debug menu.
To build the solution, choose “Start Debugging” in the Debug menu. Notice
how the console window opens and closes.

5. View the customer.xml file.
The C# project creates the customer.xml file in the project’s \bin\debug folder.
The Visual Basic .NET project creates the customer.xml file in the project’s \bin
folder. The customer.xml file contains the eConnect XML document for the new
customer.

6. Verify the customer is in Microsoft Dynamics GP.
Use the Microsoft Dynamics GP client to verify the customer was created.
Search for the customer based on the eConnect XML document in the
customer.xml file.

How the sample application works

The sample application is a basic console application that uses classes from the
eConnect .NET assemblies to create a new Microsoft Dynamics GP customer. The
application creates an eConnect XML customer document using several eConnect
serialization objects. When the document is complete, the application writes the
document’s XML to the customer.xml file.

The application validates the customer XML to ensure the eConnect XML document
is complete. To perform validation, the application uses the eConnect schema
information in the eConnect.xsd file.

The application uses eConnect connection string information to connect to the
eConnect business objects in your Microsoft Dynamics GP database.

The application takes the eConnect XML document, accesses the eConnect business
objects, and creates a new Microsoft Dynamics GP customer.

If an error occurs, the error message is displayed in the console window.

How eConnect was used

The sample application uses classes from the Microsoft.Dynamics.GP.eConnect and
Microsoft.Dynamics.GP.eConnect.Serialization assemblies.

Microsoft.Dynamics.GP.eConnect
The application uses the eConnectMethods class to instantiate an eConnectMethods
object. The application uses the object’s CreateEntity method to create the customer.
The CreateEntity method accesses the business objects on the server specified by the
eConnect connection string.

Microsoft.Dynamics.GP.eConnect.Serialization
The application uses several serialization classes to construct an eConnect XML
document. To create an XML document, the application instantiates eConnectType,
RMCustomerMasterType, and taUpdateCreateCustomerRcd objects.

E C O N N E C T P R O G R A M M E R ’ S G U I D E 129

C H A P T E R 1 8 C R E A T E A C U S T O M E R

The application first populates the taUpdateCreateCustomerRcd properties to
specify the new customer. It uses the taUpdateCreateCustomerRcd object to
populate the RMCustomerMasterType object. The RMCustomerMasterType then
populates the eConnectType object. The eConnectType object represents a complete
eConnect XML document.

The application writes the XML from the eConnectType object to a file. The
application converts the XML contents of the file to a string and passes that string to
the CreateEntity method.

130 E C O N N E C T P R O G R A M M E R ’ S G U I D E

E C O N N E C T P R O G R A M M E R ’ S G U I D E 131

Chapter 19: Create a Sales Order
The sample application uses the eConnect .NET assemblies to create a Microsoft
Dynamics GP sales order document. The following topics are discussed:

• Overview
• Running the sample application
• How the sample application works
• How eConnect was used

Overview

The sample application shows how to use eConnect serialization classes, write an
eConnect XML document to a file, and create a new Microsoft Dynamics GP sales
order document. Before you run this application, set the eConnect connection string
in the source file to access the appropriate Microsoft Dynamics GP database.

This sample application is available in both C# and Visual Basic .NET. To build this
application, you must have Visual Studio and the .NET Framework installed on
your computer. To find project files for the C# application, open the following
folder:

c:\Program Files\Microsoft Dynamics\eConnect 12.0\eConnect Samples\CSHARP

SalesOrder Console Application

To find the project files for the Visual Basic .NET application, open the following
folder:

c:\Program Files\Microsoft Dynamics\eConnect 12.0\eConnect Samples\VB DOT NET

SalesOrder Console Application

Running the sample application

To run this sample application, perform the following steps:

1. Start Visual Studio and open the solution file for the sample
application.
The solution file for the C# version of the sample is named
eConnectSalesOrder_CSharp_ConsoleApplication.sln. The solution file is in the
CSHARPSalesorderConsoleApplication folder inside the Samples folder.

The solution file for the Visual Basic .NET version is named
eConnect_VB_ConsoleApplicationSales.sln. The solution file is in the
VBDOTNETSalesorderConsoleApplication folder inside the Samples folder.

2. Open the source file.
Open the Visual Studio Solution Explorer. Open test.cs in the C# project or
Module1.vb in the Visual Basic .NET project.

3. Update the connection string.
Locate the variable named sConnectionString and set the Data Source value to
the name of your Microsoft Dynamics GP SQL Server. Set the Initial Catalog
value to the name of the Microsoft Dynamics GP company database where you
would like the new sales order to be created.

P A R T 7 E C O N N E C T S A M P L E S

132 E C O N N E C T P R O G R A M M E R ’ S G U I D E

4. Choose Start Debugging from the Debug menu.
To build the solution, choose “Start Debugging” in the Debug menu. Notice
how the console window opens and closes.

5. View the SalesOrder.xml file.
The C# project creates the SalesOrder.xml file in the project’s \bin\debug
folder. The Visual Basic .NET project creates the SalesOrder.xml file in the \bin
folder. The SalesOrder.xml file contains the eConnect XML document for the
new sales order.

6. Verify the sales order is in Microsoft Dynamics GP.
Use the Microsoft Dynamics GP client to verify the sales order was created.
Search for the sales order created based on the eConnect XML document in the
SalesOrder.xml file.

How the sample application works

The sample application is a console application that uses classes from the eConnect
.NET assemblies to create a new Microsoft Dynamics GP sales order document. The
application creates an eConnect XML sales order document using several eConnect
serialization classes. When the eConnect XML document is complete, the
application writes the document XML to the SalesOrder.xml file.

The application uses eConnect connection string information to connect to the
eConnect business objects in your Microsoft Dynamics GP database.

The application takes the eConnect XML document, accesses the eConnect business
objects, and creates a new Microsoft Dynamics GP sales order document.

If an error occurs, the error message is displayed in the console window.

How eConnect was used

The sample application uses classes from the Microsoft.Dynamics.GP.eConnect and
Microsoft.Dynamics.GP.eConnect.Serialization assemblies.

Microsoft.Dynamics.GP.eConnect
The application uses the eConnectMethods class to instantiate an eConnectMethods
object. The application uses the CreateTransactionEntity method to create the sales
order. The CreateTransactionEntity method needs the sales order XML document
and the eConnect connection string.

The CreateTransactionEntity method returns a string. The string contains the XML
of the document that was created. You can use the string to verify the document
was created or to view values that were generated by eConnect. For example, use
the XML in the string to view the document ID assigned to a new sales document.

Microsoft.Dynamics.GP.eConnect.Serialization
The application uses several serialization classes to construct an eConnect XML
document. To create a sales order document, the sample application instantiates the
eConnectType, SOPTransactionType, taSopLineIvcInsert_ItemsTaSopLineIvc-
Insert, and taSopHdrIvcInsert classes.

E C O N N E C T P R O G R A M M E R ’ S G U I D E 133

C H A P T E R 1 9 C R E A T E A S A L E S O R D E R

The application instantiates two taSopLineIvcInsert_ItemsTaSopLineIvcInsert
objects. It populates each properties of the object to represent a sales order line item.
The application completes the sales order by instantiating a taSopHdrIvcInsert
object and populating its properties.

To combine the line items and header object into a logical unit, the application
instantiates a SOPTransactionType object and populates it with the
taSopLineIvcInsert_ItemsTaSopLineIvcInsert and taSopHdrIvcInsert objects. The
application completes the eConnect XML document by instantiating an
eConnectType object and populating it with SOPTransactionType object.

The application uses a .NET XMLSerializer to write the eConnect XML document to
the SalesOrder.xml file. The application passes the XML contents of this file to the
eConnect_EntryPoint method.

134 E C O N N E C T P R O G R A M M E R ’ S G U I D E

E C O N N E C T P R O G R A M M E R ’ S G U I D E 135

Chapter 20: XML Document Manager
The Document Manager sample is a .NET application that uses eConnect XML
documents to create, or retrieve Microsoft Dynamics GP data. The following topics
are discussed:

• Overview
• Running the sample application
• How the sample application works
• How eConnect was used

Overview

This sample application uses classes from the eConnect .NET assemblies to process
an eConnect XML document. The sample displays the message or data from each
eConnect operation. To process an eConnect XML document, you must first
configure the eConnect connection string.

This sample application is available in both C# and Visual Basic .NET. To build this
application, you must have Visual Studio and the .NET Framework installed on
your computer. To find project files for the C# application, open the following
folder:

c:\Program Files\Microsoft Dynamics\eConnect 12.0\eConnect Samples\CSHARP

DirectDocSender

To find the project files for the Visual Basic .NET application, open the following
folder:

c:\Program Files\Microsoft Dynamics\eConnect 12.0\eConnect

Samples\XMLDocumentSender

The C# and Visual Basic .NET versions perform the same tasks but the user interfaces are
slightly different.

This is the eConnect XML
document to submit.

Click the Send XML
button to submit the

document.

P A R T 7 E C O N N E C T S A M P L E S

136 E C O N N E C T P R O G R A M M E R ’ S G U I D E

Running the sample application

To run this sample application, perform the following steps:

1. Start Visual Studio and open the solution file for the sample
application.
The solution file for the C# version of the sample is named
DirectDocSenderDotNet.sln. The solution file is in the
CSHARPDirectDocSender folder inside the Samples folder.

The solution file for the Visual Basic .NET version is named
XmlDocumentSender.sln. The solution file is in the XmlDocumentSender folder
inside the Samples folder.

2. Choose Start Debugging from the Debug menu.
To build the solution, choose “Start Debugging” in the Debug menu. The
application starts.

3. Update the connection string.
Click the ellipsis (...) button next to the Connection String box. A dialog box
opens. Enter your Microsoft Dynamics GP SQL Server name, log in name,
password, and database name. Click OK.

4. Select an eConnect XML document file.
Click the ellipsis (...) button next to the Select XML File button. A dialog box
opens. Use the dialog box to find a file that contains an eConnect XML
document. Select the file and click Open.

5. Review the XML document.
The XML Document box displays the contents of the file you selected. You may
edit the XML in the box. If you edit the XML, click the Save XML button to write
your changes to a file.

6. Send the XML document.
Click the Send XML button. The application uses classes from the eConnect
.NET assemblies to perform the operations specified by the XML document.

7. Review the results.
The Return Information box displays the result.

How the sample application works

The sample application uses a class from the eConnect .NET assemblies to process
eConnect XML documents. The application creates, or retrieves Microsoft
Dynamics GP data using the eConnect XML document.

The application requires an eConnect connection string to specify a Microsoft
Dynamics GP database. Use the connection string dialog box to specify your server
name, log in name , password, and database.

The application uses eConnect XML documents to perform operations on Microsoft
Dynamics GP data. The contents of the eConnect XML document determines the
type of operation.

E C O N N E C T P R O G R A M M E R ’ S G U I D E 137

C H A P T E R 2 0 X M L D O C U M E N T M A N A G E R

Click the Send XML button to have the application perform the create, or request
operation. The application displays the return result of each operation in the Return
Information box.

The application allows you to edit the contents of the XML Document box. To save
the changes you make to the eConnect XML document, click the Save XML button.
The application writes the contents of the XML Document box to a file.

If an error occurs, the application displays the error message in the Return
Information box.

How eConnect was used

The sample application uses a class from the Microsoft.Dynamics.GP.eConnect
assemblies.

Microsoft.Dynamics.GP.eConnect
When you click the Send Xml button, the application instantiates an
eConnectMethods object. How the object is used depends upon the eConnect XML
document.

• If the document’s eConnectProcessInfo node contains the element Outgoing
and the element value is TRUE, the document’s XML is requesting Microsoft
Dynamics GP data.

When the eConnect XML document requests data, the application uses the
eConnectMethods object’s GetEntity method. The GetEntity method returns an
eConnect XML document string that contains the requested data.

• If the eConnectProcessInfo node does not contain the Outgoing element or it is
set to FALSE, the document’s XML creates, updates, or deletes Microsoft
Dynamics GP data.

When the eConnect XML document creates, updates, or deletes Microsoft
Dynamics GP data, the application uses the eConnectMethods object’s
CreateEntity method. The CreateEntity method uses the eConnect XML to
perform the specified operation and returns a boolean value that specifies
whether the operation was successful.

This sample application does not validate the eConnect XML document before sending its
XML element values to the business objects.

138 E C O N N E C T P R O G R A M M E R ’ S G U I D E

E C O N N E C T P R O G R A M M E R ’ S G U I D E 139

Chapter 21: Get a Document Number
The Document Number samples include two .NET applications that retrieve the
next available document numbers from Microsoft Dynamics GP. The following
topics are discussed:

• Overview
• Running the sample applications
• How the sample applications work
• How eConnect was used

Overview

There are two sample applications that demonstrate how to retrieve document
numbers. The C# version allows you to request a document number for SOP, PM,
SOP Payments, IV, and PO.

The Visual Basic .NET. version demonstrates how to retrieve and return a SOP
document number.

To build either sample application, you must have Visual Studio and the .NET
Framework installed on your computer. To find project files for the C# application,
open the following folder:

c:\Program Files\Microsoft Dynamics\eConnect 12.0\eConnect Samples\CSHARP

GetNextDocumentNumber

To find the project files for the Visual Basic .NET application, open the following
folder:

c:\Program Files\Microsoft Dynamics\eConnect 12.0\eConnect

Samples\NextNum_TestHarness

Specify your server and
database.

Click to request the
document numbers.

Click to configure the
connection string.

Click to request the
document numbers.

P A R T 7 E C O N N E C T S A M P L E S

140 E C O N N E C T P R O G R A M M E R ’ S G U I D E

Running the sample applications

To run either sample application, perform the following steps:

1. Start Visual Studio and open the solution file for the sample
application.
The solution file for the C# sample application is named
DocumentNumberSample.sln. The solution file is in the
CSHARPGetNextDocumentNumber folder inside the Samples folder.

The solution file for the Visual Basic .NET sample application is named
NextNum_TestHarness.sln. The solution file is in the NextNum_TestHarness
folder inside the Samples folder.

2. Choose Start Debugging from the Debug menu.
To build either solution, choose “Start Debugging” in the Debug menu. The
application starts.

3. Update the connection string.
To configure the connection string in the C# sample application, enter the name
of your Microsoft Dynamics GP SQL server in the SQL Server box. Enter the
name of your Microsoft Dynamics GP database in the Database box.

The Visual Basic .NET application uses a dialog box to manage the connection
string parameters. Click the ellipsis (...) button labeled BackOffice Connection
String. Use the dialog box to specify your Microsoft Dynamics GP server name,
log in name, password, and database. Click OK to close the dialog window.

4. Retrieve the next document number.
To retrieve the next available document numbers using the C# application, click
the Get Next Numbers button. The application will display the next number for
each document type.

To retrieve the next available SOP document number using the Visual Basic
.NET application, mark the Get next number option and click the Run button.
The application display the next available SOP number. To return the number,
mark the Rollback number option and click the Run button.

How the sample applications work

Each time you click the C# application’s Get Next Numbers button, it retrieves the
next document number for each document type from the company identified by the
SQL Server and Database settings. The application displays the number for each
type of document.

If you mark the Visual Basic .NET application’s Get next number option and click
the Run button, the application retrieves and displays the next available SOP
document number. If you subsequently mark the Rollback number option and click
Run, the application will indicate that it has put back the specified SOP document
number.

If an error occurs while running either application, the application opens a dialog
box and displays the error message.

E C O N N E C T P R O G R A M M E R ’ S G U I D E 141

C H A P T E R 2 1 G E T A D O C U M E N T N U M B E R

How eConnect was used

Both sample applications use classes in the Microsoft.Dynamics.GP.eConnect
assembly.

Microsoft.Dynamics.GP.eConnect
The two applications vary in how they use the Microsoft.Dynamics.GP.eConnect
classes. If you review the button click event handlers for each application you will
note the following differences:

• The C# application instantiates a GetNextDocNumbers object and a
GetSopNumber object. The application uses the GetSopNumber object’s
GetNextSopNumber method to retrieve the next available SOP document
number.

The application uses the GetNextDocNumbers object to retrieve numbers for
the other document types it displays. To retrieve these numbers, the application
uses the GetNextPMPaymentNumber, GetNextRMNumber,
GetNextIVNumber, and GetNextPONumber methods.

• The Visual Basic .NET application instantiates a GetSopNumber object. If the
Get next number option is marked, the application uses the GetSopNumber
object’s GetNextSopNumber method to retrieve the next SOP document
number. If the Rollback number option is marked, the application uses the
GetSopNumber object’s RollBackSopNumber method.

142 E C O N N E C T P R O G R A M M E R ’ S G U I D E

E C O N N E C T P R O G R A M M E R ’ S G U I D E 143

Chapter 22: Retrieve Data
The Requester Console Application uses an eConnect XML document to retrieve
Microsoft Dynamics GP data. The following topics are discussed:

• Overview
• Running the sample application
• How the sample application works
• How eConnect was used

Overview

This C# sample application uses eConnect serialization classes to create an
eConnect XML request document. The application serializes the request document
to a file. The application uses the XML from the file to retrieve Microsoft Dynamics
GP customer data. The application displays the customer data in the console
window.

Before you run this application, set the eConnect connection string in the source file
to access the appropriate Microsoft Dynamics GP database.

The application’s request document requires you to target a Microsoft Dynamics GP server
that includes the TWO sample database.

To build this application, you must have Visual Studio and the 3.5 .NET Framework
installed on your computer. To find project files for the C# application, open the
following folder:

c:\Program Files\Microsoft Dynamics\eConnect 12.0\eConnect Samples\CSHARP

Requester Console Application

Running the sample application

To run this sample application, perform the following steps:

1. Start Visual Studio and open the solution file for the sample
application.
The solution file for this sample is named RequesterConsoleApplication.sln.
The solution file is in the CSHARPRequesterConsoleApplication folder inside
the Samples folder.

2. Open the source file.
Open the Visual Studio Solution Explorer and open the Class1.cs file.

3. Update the connection string.
Locate the variable named sConnectionString and set the Data Source value to
the name of your Microsoft Dynamics GP SQL Server. Set the Initial Catalog
value to TWO.

4. Build the RequesterConsoleApplication.exe.
Choose “Build RequesterConsoleApplication” in the Build menu.

P A R T 7 E C O N N E C T S A M P L E S

144 E C O N N E C T P R O G R A M M E R ’ S G U I D E

5. Open a console window.
From the Start menu, choose All Programs >> Accessories >> Command
Prompt. In the console window, open the directory where you built the
RequesterConsoleApplication.exe.

6. Run the RequesterConsoleApplication.
Type RequesterConsoleApplication.exe and press Enter. When the application
completes, the console window displays XML data for Aaron Fitz Electric.

How the sample application works

The RequesterConsoleApplication uses classes from the eConnect .NET assemblies
to create an eConnect XML request document. The application creates the eConnect
XML request document using several eConnect serialization classes. The
application converts the eConnect XML request document to an XML string.

The application uses the XML string and the eConnect business objects to retrieve
an XML document that contains the requested customer data. The application
displays the customer data in the console window.

The application uses eConnect connection string information to connect to the
eConnect business objects.

If an error occurs, the application displays the error message in the console window.

How eConnect was used

The sample application uses classes from the Microsoft.Dynamics.GP.eConnect and
Microsoft.Dynamics.GP.eConnect.Serialization assemblies.

Microsoft.Dynamics.GP.eConnect
The application instantiates the eConnectMethods class to create an
eConnectMethods object. The application uses the object’s GetEntity method to
retrieve the specified customer data. The GetEntity method requires two strings.
One represents an eConnect XML request document and the other is the eConnect
connection string.

Microsoft.Dynamics.GP.eConnect.Serialization
The application uses several serialization classes to construct an eConnect XML
request document. To create a request document, the sample application
instantiates the eConnectType, RQeConnectOutType, and eConnectOut classes.

The application populates the properties of the eConnectOut object to specify the
customer. It then populates RQeConnectOutType object with the eConnectOut
object. The application completes the eConnect XML request document by
populating the eConnectType object with the RQeConnectOutType object.

The application uses a .NET XmlSerializer to write the eConnectType object as a
string. The application uses the XML string as parameter of the eConnect_Requester
method.

E C O N N E C T P R O G R A M M E R ’ S G U I D E 145

Chapter 23: MSMQ Document Sender
The MSMQ Document Sender sample is a .NET application that converts an
eConnect XML document to a Microsoft Message Queue (MSMQ) message and
places that message in a specified queue. The following topics are discussed:

• Overview
• Running the sample application
• How the sample application works
• How eConnect was used

Overview

This sample application converts an eConnect XML document to a MSMQ message
and places the message in a MSMQ queue. Use this application with the eConnect
Incoming Service to create, update, and delete Microsoft Dynamics GP data.

This sample application uses Visual Basic .NET. To build this application, you must
have Visual Studio and the 2.0 .NET Framework installed on your computer. You
must also have MSMQ installed and running on your computer.

To find the project files for this Visual Basic .NET application, open the following
folder:

c:\Program Files\Microsoft Dynamics\eConnect 12.0\eConnect Samples\VB DOT NET

Queue Client

Running the sample application

To run this sample application, perform the following steps:

Specify the MSMQ queue
to receive the message.

Specify the eConnect
XML document.

Click to send the message
to the queue.

P A R T 7 E C O N N E C T S A M P L E S

146 E C O N N E C T P R O G R A M M E R ’ S G U I D E

1. Start Visual Studio and open the solution file for the sample
application.
The solution file is named QueueClientForDotNet.sln. The solution file is in the
VBDOTNETQueueClient folder inside the Samples folder.

2. Choose Start Debugging from the Debug menu.
To build the solution, choose “Start Debugging” in the Debug menu. The
application starts.

3. Mark the MSMQ Private or Public queue option.
You may use either Private or Public queues. The application default specifies
private queues.

4. Select the queue that will receive the message.
The Local Private Queues drop-down list contains the MSMQ queues on your
computer. Select the queue in the list you want to receive the eConnect XML
message.

5. Enter a message label.
Use the message label to identify your message when viewing the contents of
the queue.

6. Select an eConnect XML document file.
Click the ellipsis (...) button next to the XML Document Path box. A dialog box
opens. Use the dialog box to find and open an XML file. Highlight the file you
want to use and click Open.

7. Review the XML document.
The Browser View and Text View tabs display the contents of the XML file. You
may edit the XML in the Text View tab. If you edit the XML, you will be
prompted to save your changes to the file.

8. Send the XML as a message to MSMQ.
Click the Send to Queue button to send the eConnect XML message to the
specified queue. A message box indicates the message was successfully sent to
the specified queue. Click OK.

How the sample application works

The sample application opens the specified file, reads the XML from the file, and
writes the XML as a string to the Text View tab.

When you click the Send to Queue button, the application converts the XML in the
Text View tab to an MSMQ message. To complete the message, the application
assigns the value from the Message Label box to the message.

The application sends the message to the MSMQ queue specified in the Local
Private Queue list. The application opens a dialog box that states the MSMQ
message was successfully sent to the queue.

If an error occurs, the application opens a dialog box and displays the error
message.

E C O N N E C T P R O G R A M M E R ’ S G U I D E 147

C H A P T E R 2 3 M S M Q D O C U M E N T S E N D E R

How eConnect was used

The application uses an eConnect XML document as the basis for the MSMQ
message. The sample application does not use any of the eConnect .NET assemblies.

148 E C O N N E C T P R O G R A M M E R ’ S G U I D E

E C O N N E C T P R O G R A M M E R ’ S G U I D E 149

Glossary
Application programming
interface (API)

A set of functions or features you access to
programmatically use or manipulate a
software component or application.

Back office
A financial management system. In an
eConnect environment, this refers to
Microsoft Dynamics GP.

BizTalk adapter
A preconfigured BizTalk Application
Integration Component (AIC) that allows
BizTalk server to use eConnect.

BizTalk server
A Microsoft platform that manages the
exchange of data between applications.

Business document
A well-formed XML document containing
business data. This data may represent a
sales order or other business information.

Connection string
A text representation of the initialization
properties needed to connect to a data store.

DCOM
A wire protocol that enables software
components to communicate directly over a
network.

eConnect
A collection of tools, components, and APIs
that provide programmatic integration with
Microsoft Dynamics GP.

eConnect Integration Service
A Microsoft Windows service that enables
applications to send XML documents to the
eConnect business objects (SQL stored
procedures) Also, enables applications to
retrieve specified XML documents from
Microsoft Dynamics GP.

eConnect XML document
A text document that describes Microsoft
Dynamics GP data. The eConnect XML
schema specifies the content and structure of
data in the document.

Extensible Stylesheet Language
(XSL)

A high-level data manipulation language.
XSL is used to manipulate XML documents.

Front office
An application that communicates with the
back office. Examples include customer
relationship management systems, data
warehouses, and web sites.

Incoming Service
A Microsoft Windows service that monitors
a queue for new eConnect XML documents.

Valid documents are used to create, update,
or delete records in Microsoft Dynamics GP.

Microsoft message queuing
(MSMQ)

A message infrastructure and development
platform for creating distributed, loosely-
coupled messaging applications.

Middleware
Software that mediates between an
application program and a network. It
manages the interaction among disparate
applications across the heterogeneous
computing platforms.

Outgoing Service
A Microsoft Windows service that publishes
eConnect XML documents to a specified
queue. The XML documents represent
documents that were created, updated, or
deleted in Microsoft Dynamics GP.

Post stored procedure
A customized SQL stored procedure that
runs immediately after an eConnect stored
procedure.

Pre stored procedure
A customized SQL stored procedure that
runs immediately before an eConnect stored
procedure.

Schema
An XML file (with typical extension .XSD)
that describes the syntax and semantics of
XML documents using a standard XML
syntax. An XML schema specifies the content
constraints and vocabulary that compliant
documents must accommodate.

Serialization Flag
A boolean property that specifies whether to
use or discard the value assigned to a
property of an eConnect serialization class.

Services
Microsoft Windows services are long-
running applications that perform some
system function. They typically do not
display any user interface. eConnect uses
several services for moving eConnect XML
documents in and out of various message
queues.

Stored procedure
A group of Transact-SQL statements
compiled into a single execution plan. The
business logic for eConnect is contained in
stored procedures.

Transaction Requester
The Transaction Requester publishes
eConnect XML documents to a queue. The
XML documents represent Microsoft
Dynamics GP documents.

Trigger
A special class of SQL stored procedure that
executes automatically when an update,

insert, or delete statement is issued for a
table or view.

Windows Communication
Foundation (WCF)

A runtime and a set of APIs for creating
systems that send messages between
services and clients. Used to create
applications that communicate with other
applications on the same system or a remote
system.

XML
A text-based format that uses markup tags
(words surrounded by ‘<‘ and ‘>’) to
describe how a document is structured and
the data it contains.

150 E C O N N E C T P R O G R A M M E R ’ S G U I D E

E C O N N E C T P R O G R A M M E R ’ S G U I D E 151

Index
A
adapter, BizTalk 18
AIC, see adapter
API, see application programming

interface
app config

add tracing 47
configuration settings 43

application configuration 43
configuration file 43
enable tracing 46, 47
enabling tracing 45
how to add configuration setting 44

application programming interface
architecture 16
defined 149
eConnect 16

applications, see samples
appSettings, adding to your configuration

file 44
architecture

BizTalk 18
business objects 14
chapter 13-19
diagram 13
eConnect APIs 16
Transaction Requester 18

assemblies
files 41
Microsoft.Dynamics.GP.eConnect 49
Microsoft.Dynamics.GP.eConnect.Ser

ialization 61
namepaces 42
references 41

B
back office, defined 149
BizTalk

architecture 18
development 18
eConnect adapter 18
orchestration 18

BizTalk adapter, defined 149
BizTalk server, defined 149
business document

see also document, XML document
defined 149

business logic
calling a stored procedure 95
custom stored procedure 99
custom XML nodes 97
customization options 95
customizing pre and post stored

procedures 102
described 95
example 99
modifying 95
part 94-104

Business Logic Extensions, chapter
101-104

Business Logic Overview, chapter 95-96
business objects

see also stored procedures
architecture 14
business logic 95
described 14
diagram 14
SQL stored procedures 14
using 15

C
CDATA

removing data from a field 31
using 31

client constructors
described 75
eConnect Integrations Service 74
parameters 75

configuration file
add appSettings 44
specifying setting 43

connection string, defined 149
constructors, client constuctors for the

eConnect Integration Service 74
conventions, in documentation 3
Create a Customer

chapter 127-129
sample application 127

Create a Sales Order
chapter 131-133
sample application 131

CreateEntity method, how to use 50
Custom XML Nodes, chapter 97-100
Customizing the Transaction Requester,

chapter 115-123

D
DCOM, defined 149
deserialization, example 70
document

automated numbering 29
create 27
create a customer 33
delete a customer address 34
described 26
removing data from a field 31
retrieve customer data 34
rollbacks 26
sample files 28
serialization assembly 28
special characters 31
structure 25
structure diagram 25
updating 28

document object, serialization class 62
documentation, symbols and conventions

3
DocumentRollback, how to use 54
documents, serialization classes 61

E
eConnecctTraceSource 45
eConnect

add a .NET reference 41
API layer 14
APIs 16-17
architecture diagram 13
assemblies 41
benefits 7
BizTalk 18
business objects 14
data access layer 14
defined 149
described 7
eConnect Integration Service 16
example 8
getting started 10
MSMQ, described 17
.NET support, described 17
schema 16, 23
schema files 23
schema validation 23
serialization classes 61
stored procedures 14
support 3
transaction type, described 26
uses 7
using .NET namespaces 42
XML document

described 26
examples 33, 34
structure 25

eConnect and .NET, chapter 49-59
eConnect Integration Service

adding a service reference 74
chapter 73-80
classes 73
client constructors 74
CreateEntity example 76
defined 149
described 16, 73
exception handling 78

eConnect MSMQ Control 83
eConnect Overview, part 6-19
eConnect Requester Setup 107

see also Requester Enabler/Disabler
SQL triggers 19

eConnect Samples, part 126-147
eConnect Schema, chapter 23-24
eConnect Schema and XML Documents,

part 22-37
eConnect XML documents, chapter 25-31
eConnect XML nodes, described 27
eConnect_Out

described 18
Outgoing Service 89
RequesterTrx 110

eConnect_Out_Setup
described 18
install 115
Transaction Requester Service 115

I N D E X

152 E C O N N E C T P R O G R A M M E R ’ S G U I D E

eConnect_Requester method,
deserializing 70

eConnectException 58
eConnectFault, example 78
eConnectMethods

CreateEntity method 50
GetEntity method 51

eConnectOutTemp, described 18
eConnectProcessInfo, described 27
eConnectSqlFault, example 78
eConnectType 62
ErrorState

post procedures 101
pre procedures 101

ErrString
post procedures 102
pre procedures 102

exception handling 58, eConnect
Integration Service 78

extensible stylesheet language, see XSL

F
front office, defined 149

G
Get a Document Number

chapter 139-141
sample application 139

GetEntity method, how to use 51
GetNextDocNumbers, how to use 54
GetSopNumber, how to 57

I
Imports statement, namespaces 42
Incoming Service

chapter 85-87
create a document 85
create a message 85
defined 149
described 83, 85
example 86
validation 85

installation
sample XML documents 28
schema files 23

L
light bulb symbol 3

M
margin notes 3
Microsoft .NET

assemblies 41
described 17
framework 41
namespaces 42
references 41

Microsoft message queuing
see also MSMQ
defined 149

Microsoft SQL Server Management Studio
102

Microsoft Visual Studio, required for
.NET development 41

Microsoft.Dynamics.GP.eConnect
assembly 49
DocumentRollback 54
eConnectException 58
GetNextDocNumbers 54
GetSopNumber 57
RollBackDocument 57

Microsoft.Dynamics.GP.eConnect.Serializ
ation, assembly 61

middleware, defined 149
MSMQ

chapter 83-84
described 17, 83
eConnect MSMQ Control 83
Incoming Service 83
monitoring queues 83
Outgoing Service 83
retrieving messages 89
sending a new message 85
Windows services 83

MSMQ Development, part 82-91
MSMQ Document Sender

chapter 145-147
sample application 145

N
namespaces

adding 42
described 42
example 42
Imports statement 42
service reference 42
using statement 42

.NET
assemblies 41
described 17
namespaces 42
references 41

.NET Development, part 40-80

.NET Development Overview, chapter
41-48

nodes, see XML nodes 7

O
Outgoing Service

see also Transaction Requester
chapter 89-91
default queue 89
defined 149
described 83, 89
eConnect_Out 89
example 90
publishing documents 89
Requester Enabler/Disabler 89
retrieving MSMQ messages 89
Transaction Requester 107

Overview, chapter 7-11

P
post procedure

defined 149
described 101
ErrorState 101
ErrString 102
files 102
output paramaters 101
RequesterTrx 121

pre procedure
defined 149
described 101
ErrorState 101
ErrString 102
example 102
files 102
output parameters 101
RequesterTrx 121

product support, for Microsoft Dynamics
GP eConnect 3

Q
queues

see also MSMQ
retrieving MSMQ messages 89
sending a new message 85

R
Requester, see Transaction Requester
Requester Enabler/Disabler 89
RequesterTrx

described 110
examples 122
post procedure example 122
pre and post procedures 121
pre procedure example 122

Retrieve Data
chapter 143-144
sample application 143

RollBackDocument, how to use 56, 57

S
samples

Create a Customer 127
Create a Sales Order 131
Get a Document Number 139
MSMQ Document Sender 145
Retrieve Data 143
XML Document Manager 135

schema
defined 149
described 16, 23
install 23
uses 23
validation 16

schema validation, see validation
serialization

creating document objects 61
document type 62
example 65
transaction types 62

E C O N N E C T P R O G R A M M E R ’ S G U I D E 153

 I N D E X

serialization (continued)
XML nodes 61

Serialization Assembly, chapter 61-72
serialization flag, defined 149
serialization flags

described 63
use 63

serializaton flags, example 63
service reference, adding to an application

74
services

see also Incoming Service, Outgoing
Service, Replication Service

defined 149
described 83

special characters
described 31
in eConnect XML documents 31

SQL trigger
defined 149
eConnect Requester Setup 19

stored procedures
see also business objects
business logic 95
custom 99
customizing pre and post procedures

102
defined 149
diagram 14
ErrorState 96
modifying 95
output parameters 101
using 95

support, for Microsoft Dynamics GP
eConnect 3

switchValue, values 45
symbols in documentation 3

T
tables

eConnect_Out 18
eConnect_Out_Setup 18
eConnectOutTemp 18

tace listeners, listed 45
taRequesterTrxDisabler

described 111
example 111

technical support, for Microsoft Dynamics
GP eConnect 3

tracing
configuration example 47
how to enable 46
switchValue settings 45
trace listeners 45
using .NET tracing 45

Transaction Requester
architecture 18
components 107
custom

described 115
disabling 111

Transaction Requester (continued)
custom

eConnect_Out_Setup 115
elements 115
example 117
install 115
query requirements 117

defined 149
described 14, 18
deserializaing 70
diagram 18
disabling 110
document tables 108
document types 107
eConnect_Out table 18
eConnect_Out_Setup table 18
eConnectOutTemp table 18
example 19
Outgoing Service 107
part 106-123
publishing documents 107
RequesterTrx element 110
taRequesterTrxDisabler 111

transaction type, described 26
transaction type object, serialization class

62
transactions

document 26
rollback 26

trigger, see SQL trigger

U
using statement, namespaces 42
Using the Transaction Requester, chapter

107-113
utilities

eConnect MSMQ Control 83
eConnect Requester Setup 107
Requester Enabler/Disabler 89

V
validation

Incoming Service 85
schema 16

Visual Studio, required for .NET
development 41

W
warning symbol 3
Windows Communication Foundation,

defined 149
Windows services, see services

X
XML

defined 149
described 8

XML document
automated numbering 29
create 27
create a customer 33
defined 149

XML document (continued)
delete a customer address 34
described 26
diagram 25
retrieve customer data 34
rollbacks 26
sample files 28
serialization 28
special characters 31
structure 25
updating 28
using CDATA to remove data from a

field 31
XML document examples, chapter 33-37
XML Document Manager

chapter 135-137
sample application 135

XML nodes
adding a custom node 97
elements 27
handling custom nodes 99
serialization classes 61
taRequesterTrxDisabler 111

XML schema
described 23
install 23
uses 23

XSD
files 23
see schema

XSL, defined 149

154 E C O N N E C T P R O G R A M M E R ’ S G U I D E

	Contents
	Introduction
	What’s in this manual
	Symbols and conventions
	Product support

	Part 1: eConnect Overview
	Chapter 1: Overview
	What is eConnect?
	What eConnect can do
	eConnect Example
	Getting started

	Chapter 2: Architecture
	Architecture diagram
	Business objects
	eConnect APIs
	BizTalk
	Transaction Requester

	Part 2: eConnect Schema and XML Documents
	Chapter 3: eConnect Schema
	eConnect schema overview
	Installing eConnect schema
	Using eConnect schema
	eConnect schema reference

	Chapter 4: eConnect XML Documents
	eConnect XML document structure
	Creating an eConnect XML document
	Using the eConnect XML document sample files
	Using eConnect to update existing data
	Automating document number assignment
	Special characters in eConnect XML documents

	Chapter 5: XML Document Examples
	Create a customer
	Delete a customer address
	Retrieve a customer
	Assign a document number to a sales order

	Part 3: .NET Development
	Chapter 6: .NET Development Overview
	eConnect and .NET
	Adding a reference
	Including the namespace
	Specifying configuration settings
	Tracing an eConnect .NET application

	Chapter 7: eConnect and .NET
	Microsoft.Dynamics.GP.eConnect
	Using CreateEntity for new records
	Retrieving XML documents with GetEntity
	Retrieving a document number
	Returning a document number
	Retrieving a sales document number
	Returning a sales document number
	eConnect exception handling

	Chapter 8: Serialization
	Microsoft.Dynamics.GP.eConnect.Serialization
	Creating an eConnect document for a .NET project
	Using serialization flags
	Serializing an eConnect document object
	Deserializing a Transaction Requester document

	Chapter 9: eConnect Integration Service
	eConnect for Microsoft Dynamics GP 2013 Integration Service
	Adding a service reference
	Client constructors
	Using the CreateEntity method to add a record
	eConnect Integration Service exception handling

	Part 4: MSMQ Development
	Chapter 10: MSMQ
	Microsoft Message Queue overview
	Windows Services used with MSMQ
	eConnect MSMQ Control

	Chapter 11: Incoming Service
	Creating an eConnect XML document
	Creating an MSMQ message
	Incoming Service example

	Chapter 12: Outgoing Service
	Publishing the eConnect XML documents
	Retrieving the MSMQ message
	Outgoing Service Example

	Part 5: Business Logic
	Chapter 13: Business Logic Overview
	Business logic
	Extending business logic
	Calling the business objects

	Chapter 14: Custom XML Nodes
	Adding an XML node
	Creating a SQL stored procedure

	Chapter 15: Business Logic Extensions
	Modifying business logic
	Using pre and post stored procedures

	Part 6: Transaction Requester
	Chapter 16: Using the Transaction Requester
	Transaction Requester Overview
	Requester document types
	Requester document tables
	Using the RequesterTrx element
	Using the <taRequesterTrxDisabler> XML node

	Chapter 17: Customizing the Transaction Requester
	Creating a Transaction Requester document type
	Implementing the RequesterTrx element

	Part 7: eConnect Samples
	Chapter 18: Create a Customer
	Overview
	Running the sample application
	How the sample application works
	How eConnect was used

	Chapter 19: Create a Sales Order
	Overview
	Running the sample application
	How the sample application works
	How eConnect was used

	Chapter 20: XML Document Manager
	Overview
	Running the sample application
	How the sample application works
	How eConnect was used

	Chapter 21: Get a Document Number
	Overview
	Running the sample applications
	How the sample applications work
	How eConnect was used

	Chapter 22: Retrieve Data
	Overview
	Running the sample application
	How the sample application works
	How eConnect was used

	Chapter 23: MSMQ Document Sender
	Overview
	Running the sample application
	How the sample application works
	How eConnect was used

	Glossary
	Index

